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This -report- introduces a new method for solving the problem of
optimally spacing points in a three-dimensiona] region so that their
distances from each other are as great as possible. One application of
the problem deals with colcr selection for aircraft displays where the
colors are plotted as points in a three-dimensional color space and the
distance between two points is directly related to the distinguishability
of the two colors. The method itself 1is a heuristic algorithm very
similar to one designed by Carter and Carter (2). The newer algorithm
apparently yields similar solutions with fewer runs, but because it is
more thorough, it is slower. The program was tested on problems as large
as 23 points whose feasible region had seven faces. The major dis-
advantage of this new method is that its solutions are not guaranteed to
be optimal. As a result, the user must perform several replications of
various randomly selected starting locations in order to increase the
chances of achieving an optimal solution. © ,/ Tl
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I. Introduction

For centuries, mathematicians have tried to solve tricky little
puzzles that perplex and confuse the human mind. Rubick's Cube is a
popular recent example of this phenomenon. This thesis 1is another
example. Simply put, the problem addressed herein is to space points in
a three-dimensional region (like a box) so that they are as far apart
from each other as possible. 0On the face of it, the task seems rela-
tively easy, but nothing could be further from the truth. A simple
example would be to maximize the distance between just two points in a
cube. While the answer to that problem might be intuitively obvious
(place the points in opposite corners), add one more point and the solu-
tion is not so apparent and requires a great deal of mathematical rigor.

Faced with a problem like this in real life, most of us would be
content to settle on something that is less than optimal. But, to a
pilot who needs to distinguish between friendly and hostile forces on his

aircraft display, the importance of an optimal solution takes on a dif-

ferent meaning. That's why this project is so useful, and I sincerely
4 hope that it will help that pilot in even a small way.
& One final thought before moving on. Although this is a Master's

thesis on what 1is potentially a very technical subject, it is my desire

to make the report understandable to even the most uninformed of laymen,

and perhaps even enjoyable at times. I do not believe that writings at

LA Gl e End s e

this level were meant to be boring and esoteric. So, if you cannot
understand it, then I have failed and I should be shot at dawn. Rut if

you don't try to understand it, then you're already wearing the blindfold

It 20 B Aot b oe SNEEene e Ao o




and should be put in front of the firing squad instead. Load the rifle,

cock the trigger, and turn the page to find out who's shooting who.
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I1. Background

Why in the worid would one want to space points in a three-
dimensional region, anyway? Well, there are many reasons. Say you
wanted to locate speakers for a quadraphonic stereo system in your living
room. You would want them as far apart from each other as possible
because you don't want the various sounds to become confounded. Or per-
haps you own a warehouse with a limited number of security cameras. VYou
would probably want the cameras optimally spaced so that no two were
filming the same areas of the warehouse. How would you go about solving
this problem mathematically? You could try to maximize the sum of the
distances between the objects, but that might result in a solution with
an unacceptably small distance. A more desirable solution would probably
result from maximizing the distance between the two closest objects.
This "maximin" formulation is accepted as the objective for the spacing
problem,

The spacir ] problem is very similar to a problem known in the world
of operations research as the obnoxious facility location problem. An
example of an obnoxious facility would be a nuclear waste disposal site
which is most desirable when it is located far away from cities. Church
and Garfinkel (5) offer a solution to the obnoxious facility location
problem where the facilities can be placed in a discrete number of loca-
tions on a network, but the differences between that problem and the
spacing problem preclude successfully adapting Church and Garfinkel's
method to the spacing problem. First of all, the idea is to locate

obnoxious facilities as far away as possible from other fixed points,
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whereas the spacing problem aims to locate the objects as far away from

each other as possible., Second, Church and Garfinkel's facilities can bhe

placed in only a finite number of locations on a network, while the
objects in the spacing problem can take on an infinite number of loca-
tions. Finally, the spacing problem's objective is to maximize the mini-
mum distance between points (maximin), as opposed to Church and
Garfinkel's objective of maximizing the median distance (maxian).

Another problem similar to the spacing problem is the location prob-
lem. It seeks to locate objects (like warehouses) as close to other
fixed facilities (such as retail stores) as possible. Once again, much
work has been done in the area by many people, most notablv Charalamhous
(1 and 3), Cooper (6), Juel (8 and 11), and Love (10, 11, and 12), bhut
any applicability to the spacing problem is negligible. As befire, there
is the problem of locating facilities in relation to fixed objects
instead of each other. The location problem is also concerned with mini-
mizing the sum of the distances (minisum) or minimizing the maximum
distance (minimax), not with maximizing the minimum distance.

There are many practical applications of the spacing problem. In
addition to those mentioned before, the spacing problem could be applied
toward locating MX missile silos, spacing mines in a mine field, or per-
haps placing communications satellites in space for maximum coverage of
the earth., A particularly fascinating application of the spacing problem
is in the area of color spacing. One of the tasks of the Air Force Aero-
space Medical Research Laboratory (AFAMRL) has been to choose colors for
aircraft displays, air traffic control displays, aeronautical maps, etc.,
so that all the colors are as distinguishable from each other as pos-

sible. When one is dealing with a color Cathode-Ray Tube (CRT) display,
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the CRT's red, green, and blue guns are used additively to produce vari-
ous colors. Therefore, any color can be uniquely defined hy three param-
eters. They are the luminances (brightnesses) of the CRT's red, green,
and blue guns, So, each color produced by the CRT can be plotted as a
point in three dimensions where the axes represent those three values. A
depiction of the resulting color space is shown in Figure 1. The boun-
daries of the region correspond to the technological limits of the CRT,
For instance, in Figure 1, the maximum luminances are 50, 160, and
20 candellas per meter squarred for the red, green, and blue guns,
respectively, with zero being the minimum. Inr addition, there is a small
region near the origin that 1is not a feasible color choice for this

example because dark colors are not desired.
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Figure 1. Example Feasible Region for the Color Problem
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Unfortunately, this red, green, blue color space is not ‘“per-

ceptually uniform." That is to say that the perceived difference between

the red and the purple shown in Figure 1 is not the same as the differ-

1
ence between yellow and white even though their distances are the same. 4
The Commission Internationale de 1'Esirage (CIE) recommends the CIE
L*u*v* system as a more perceptually uniform color space (13). The L* ;

axis is a function of the luminance of a color, while the u*v* plane

jdentifies the color's position in a

u’v” CIE color diagram (see Figure 2).
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colors in the CIE L*u*v* space is approximately proportional to the
Euclidean distance between their points. FEuclidean distance is nothing

more than our common sense notion of distance whose formula is given by:

d(],J) =J(L: - L;)Z + (u‘:’ - U3]2 + (V; - v.s)z (1)

where

d(i,j) = the distance from point i to point j

(L;, ut, vg) = the coordinates of point i

Carter and Carter have developed a computer algorithm to solve the
color spacing problem and cite several military applications (2:2936).
They describe how the method could be used to choose colors for strategic
aircraft displays where the different colors correspond to friendly, hos-
tile, and neutral forces or various enemy target types. As another
example, an air traffic controller's display can show airplanes at dif-
ferent altitudes all represented by various colors., Some engineering
applications include showing "the distribution of some property
throughout a system, such as stress in a structure or percent of full
capacity in various parts of an electric power grid" (2:2936). As you
can see, there are many interesting applications of the color spacing
problem both in the military and in the private sector. AFAMRL, however,
has not been able to successfully implement Carter and Carter's program
because of various bugs and program deficiencies and has given only edu-
cated answers when decisions regarding color selection were required in
the past. Concerning the algorithm, Carter and Carter themselves believe

that “presumably a more efficient one could be devised by specialists in
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operations research" (2:2937). For those reasons, this effort was under-

3
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taken. The genera® objectives herein are to provide AFAMRL with a
working program that produces good answers to the color spacing problem,

and is also an improvement over Carter and Carter's method.
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I11. Literature Review of Carter and Carter's Method

The only known solution to the color-spacing problem was introduced
by Carter and Carter in 1982 (2). It consists of first randomly placing
n points in the region (shown in Figure 1), then identifying the minimum
CIE L*u*v* distance between all n(n-1)/2 pairs of points in that
region. Let's call that value D. Once that distance has been identi-
fied, the two closest points (i.e., the endpoints associated with the
minimum distance) are investigated to see what effect is created by
moving each endpoint to its 26 adjacent locations. This step can con-
ceptually be thought of as "wiggling" the two closest points to see if
they can be moved farther apart. Figure 3 shows the various alternatives
for one endpoint. The alternatives fall on the boundaries of a cube
whose sides are twice the step-size in length and whose center (the 27th

point) 1is the endpoint itself. There are 52 different moves that can be

—*- ¥
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Figure 3. Alternative Locations for an Endpoint
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made (26 for each endpoint). If a move decreases the distance between
those two points or pushes one of them outside of the region, that
alternative is no longer considered. The remaining alternatives are then
ranked according to how much they increase the distance between the
endpoints,

If the highest ranking alternative causes an increase in D, that
move is made. Otherwise, the second highest ranking alternative is con-
sidered, and so on, until one of the alternatives causes an increase in
D. If none of the alternative moves increase D, then the step-size is
halved and the process is repeated; otherwise, the point is moved and the
process is repeated until an expanding move cannot be made, at which time
the step-size is halved.

This halving continues until the step-size is less than one lumi-
nance unit in the red, green, and blue color space. Once the step-size
is less than one unit, it is increased back to its original value and the
point-moving and step-size halving process is repeated, "to check that
the value of D arrived at is not merely a local optimum" (2:2938), If
the points remain in the same place throughout the repetition, then "the
... configuration of points is assumed to represent a global optimum
value of D" (2:2938).

In their results, the authors state that when the number of colors
{(n) is three, the solution is identical for each random placement of
points, and that, in general, the number of identical solutions decreases
as n increases. They also give the results of example problems where 3,
4, 6, 10, and 25 colors were spaced.

Carter and Carter's method is a very good first attempt, Nonethe-

less, it t.. some problems as well. For instance, there is no supporting
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proof that the solutions are globally optimal, although Carter and Carter
assume that they are (2:2938). In the article, the authors summarize
results of their procedure where many replications are made for placement
of 3, 4, 6, 10 and 25 points. For the case of six points, 50 replica-
tions were made and the variance among the values of D arrived at was
62.45, where the maximum value of 0 for all replications was 124.08
(2:2938). This relatively high variance points to the fact that a wide
range of values for D can be expected for any one replication, and that
most replications are not close to even the maximum known value of D for
that problem, let alone the global optimum value which for color spacing
problems is largely still unknown. Whether or not the solutions repre-
sent even local optima is uncertain as well,

Another problem is that there is no validation of results. For
instance, Carter and Carter could have tested the algorithm on the simple
case of spacing eight points in a cube to see if the optimal solution (a
point in each corner) is obtained. There is not even a discussion as to
the physical desirability of the colors that were generated by the
algorithm,

Also, the computer code is poorly documented and difficult to under-
stand. Variables are not identified, variable names are often conflict-
ing and confusing, and statement Tlabels are poorly numbered and sometimes
not found. As for the documentation, the number of internal comments is
insufficient to make the program easily understandable.

Carter and Carter's method has 1its good points as well., For
example, it is easy to understand. Best of all, the technique apparently
yields solutions that are at least close to optimal, which is all they

really set out to do anyway. B8ut, they could possibly do better. For

11
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instance, the two closest points may be optimally spaced, but what about
the rest of them? Wouldn't it make sense to go through the algorithm
once, then maximize the second closest distance, the third closest, and
so on, until all the points are optimally spaced?

Also, Carter and Carter maneuver their points in one color space and
then transform them to another color system to calculate the distances.
I believe a more appropriate approach would be to do all the maneuvering
and calculations in the same coordinate system. This would not only
increase the efficiency of the program, it would increase its flexibility
as well. It would enable the algorithm to solve any type of spacing
problem, not just the color spacing problem. An algorithm like Carter
and Carter's, but with better validation and documentation, including the
concept of successively maximizing the minimum distance, second minimum
distance, third minimum, and so on, as well as continuous operation in

the same coordinate system, should make for an improved, more reliable,

more understandable, more efficient, and more flexible solution
technique.
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[V. Mathematical Development

If you're afraid of mathematics, like so many of us are, this sec-
tion might not appeal to you at first. But don't be frightened, hecause
the mathematics here are really nothing more than algebra, although the
terminology and notation might be somewhat difficult to keep track of.

The first part will show the mathematical formulation of the color-

gy

spacing problem in general terms. Next, there will be an examination of
some of the solutions to simple spacing problems., The final section will
:‘ be devoted to discussing how the problem could be solved by nonlinear
C .
o programming.
.
g
! Problem Formulation .
?I For the spacing problem, we want tc maximize the minimum distance j
¢ among n points in a convex polyhedron. It's a mouthful, isn't it? Let's :
{ |
Ei take it apart and define some terms. A polyhedron can be simply defined
as a region bounded by "many faces." A triangle is an example of a poly-
] hedron that has three faces; a square has four faces. In three dimen-
.- sions, a cube and a box are each polyhedrons with six faces while a
]
4
[ pyramid has five. These are all convex regions as well, because there
-
fi are no "juts" sticking into the region. A star (for instance, one of
’..
! those on the U.S. flag) is not a convex region for that very reason.
¢
. More formally, a region is convex if every point in that region can be
- connected to every other point in the region with a straight line that
g
3
. 13
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stays completely within the region. All it means is that no juts or
dents are allowed.

In two dimensions, the region bounded by a circle is convex, as is

bnbeiaolli bt et solode

that of a sphere in three dimensions, but neither one of them is a poly-

hedron because they have no faces. Mathematically speaking, a polyhedron

st ot

must have linear boundaries. That means that a polyhedron must be made

[

up of a series of straight lines (or planes if it's three-dimensional).

No curved boundaries are allowed. Since the color spacing problem is a

-

three-dimensional one, we will largely concern ourselves with three

dimensions from now on.

The boundaries are known in the trade as constraints. A linear con- R

straint is of the form:

ax + by + ¢z =k (2)

where

(x,y,z) = the coordinates of a point

d

C k = a constant known as the right hand side value ?
; a, b, and ¢ = any real numbers |
| .
r’ The above equation describes a plane. Changing the equation to ax +
i_ by + cz < k , we have the points on a plane in addition to those on one
r side of it. But our region has many faces to it, so that there are

¢ actually many constraints of the form:
i
! apx + by + ¢z <k

q
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azx + bz_y + C22 i k2

azx + b3y + 32 j_k3

agx + bfy t CeZ < kf

where

f = the number of faces which bound the region

Together, these constraints form a region within which all of our points
must stay. If a point is outside of the region, then at least one of
these constraints will be violated.

Let's turn our attention again to the objective. We want to maxi-
mize the minimum distance among n points. The distance from one point to

another in the region can be measured by the Euclidean distance formula:

d(i,j) =J[xi - XJ')Z + (.Y-i - .Yj )2 + (z‘i = Zj)?_ (3)

where

d(i,j) = the Euclidean distance from point i to point j

(xi» ¥, z3) = the coordinates of point i

In order to solve the problem, we need to find the minimum distance

between all pairs of points. [If there are only three points, it's easy;

15

Roose L0 e R T A D TP PP Sy . SR Nt

b M ca . eadh e et SAR sed G ik SREL nat seds el Mk Ne it ek W i iad aak tad Aalh el S et Sl Sedb AadC Ak ddtiadi bl Al MR A TdT T e T T F T e,




-———y i LS At BEda S oy e g Jhot B Tade Banh - St - A dn on 0 8 on Dhda Srie Jibee Aui A A AT A i S T S Wi Ml Sl i Al Rl Sl LA Andt B ir R A

.
R
_'i
RIS

y‘v:v.vr—v—v o
. R .

there are only three pairs of points and we want the min {d(1,2),
d(1,3), d(2,3)} where min { | denotes the smallest value of all the

numbers in the set in brackets. But for n points, that set may he quite

P VN

large. The minimum distance for n points would be:

Ty

min {d(1,2), d(1,3), d(1,4), ..., d(1,n), d(2,3), d(2,4), ...,
d(29n)’ d(3:4), seey d(3,n), LY d(n-2,n-l), d(n'zon), d(n-l,n)} J

As a matter of fact, there are n(n-1)/2 values in the set. Letting

D = min {d(i,j)}, the objective then is to:

maximize D = maximize min {d(i,j)} (4)

subject to

\l(xl - xg]z + (.Vl - Yz)z (21 - 22)2

o
~

+
n
[« ¥
—
p—

-
N
~—~

\l(xl - x3)2 + (.Vl - Y3)2 + (Zl -4 )2 = d(1,3)

LW

. L] :

L : : L] :3'

7 2 2 '

{ kan-l =X )T by -y (2. - 2, )" = dln-1, n) -

- ;

S B

g apxy * byyp * c12) L ky »
E

q apxp * bryp * €123 L K :

'. ;
b
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apxp * by, F gz, < kg

-
PETPNEY., § L

P

*boyy + 7y < kg "

MO - DOy
.
Q
™
>
2

ApXy + boyy + Crzy < ko

M -~ MR
Y -l

X * boyy * Cozpy < ky
"4

T8

afx) * beyp * czy < K¢

afxp * beyp * czp < K¢

Y, W

LX)
. P

1

AfXn * Deyn * Crzg < k¢
where 1
i=1to n=1 ]
j=1i+1ton o

L |

1
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n the number of points

f the number of faces

the first set of constraints = the distance equations
the second set of constraints = the boundary constraints for

all n points

We can eliminate the square root signs in the distance constraints
and it will not affect the formulation, so let's do that just to uncom-
plicate the equations, Also, we can subtract D from all the distance

constraints to create equations of the form:

But we know that d(i,j) - D is going to be a number greater than or
equal to zero because D represents the smallest possible value of any

d(i,j). Therefore, we can change the equation above to:

. 2 2 ‘ 2
(x; = xj) + (yi - yj) v (zy - ZjJ -D>0 (6)
The problemn now becomes:
maximize D (7)
subject to
(- x) 2 (v -y P * (2 - 28 =020
i J i J i J S -

18
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agxg + bfyg * Cezg < kg

where

l1ton-1

—
]

j=i+1lton

g = a subscript for the 1 through n points that must stay within
each boundary constraint

n = the ﬁumber of points

f = the number of faces

At this point you might think we're done, but there are a few more
simplifications to go. For practically all commercial methods of con-

strained optimization, the constraints are required to have equal signs

fﬂ instead of inequalities. We accomplish this by using variables that are
a3
& commonly referred to as surplus and slack variables. For example, we
p .
t‘ know from before that the value of d(i,j) - D is non-negative, but we
r .
b don't know how large it is. If we call this value sjj and subtract it
E from the distance constraint, we have:
I‘
2 2 2

.= X )+ Yy, =y, )+ (2, -z, -D-s..=10 8
g (xy = % e by =y P (2 - 25) y (8)
¢
r
L
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The constraint is now an equality constraint as required, and Sij is
called the surplus variable because it represents how much greater than
zero equation (6) is.

Similarly, we can add what is called a positive slack variable to

the boundary constraints to make equations of the form:

i - LIS + bhyg + ChZg + Shg = ky, (9)
g where
Shg = the slack variable
&.—-
- The problem can then be formulated as:
maximize D (10)

f“ subject to

o 2 2 2 =
h (Xi-ij + (v, yJ.) + (2, zj) D - s54;=0

'

4 ahxg + bhyg + chzg + Shg = kh

F.

p.. .

- xg, yg’ zg, 0, Sij’ Shg’ kh >0

fi; where

@

o i=1lton-1

o

; j=i+1lton

o g = a subscript for the 1 through n points

e

. h = a subscript for the 1 through f boundary constraints

N
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n = the number of points
f = the number of faces

surplus variables for the distance constraints

w
1]

Shg slack variables for the boundary constraints

The third set of constraints states that x, y, z, D, s, S, and k
must all be greater than or equal to zero, commonly referred to in the
business as the non-negativity constraints, This is another requirement
of the commercial optimization techniques. Let's talk about the non-
negativity constraints. We already know that D is positive (you can't
have a negative distance), and Sij and Shg are also positive as we
discussed before. If the x's, y's, and z's could possibly come out nega-
tive, we could make transformations of the form x: = x: - t where t is

i i
the minimum possible value of x, to ensure that «x:

{ is positive. 1If k
is negative, then you can multiply both sides of the equation by -1 to
alleviate the problem, but the sign changes from less than to greater
than, and Shg becomes a surplus variable instead of a slack variable.
These steps ensure that S would always be positive as well as k, and the
non-negativity constraints are now completely satisfied.

Notice that we now have n(n-1)/2 distance constraints that are
nonlinear, and n « f linear boundary constraints. The next step is to
incorporate the nonlinear constraints into the objective function with
what is called a Lagrangian function. If we call the left side of the

first distance constraint 012, the second Qy3, and so on, the Lagrangian

would Took like this:

L= D %3000 * Mgz * eee * NpQpp* voe * ApgpQpegq (1)

21
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or similarly:

n-1 n 2 2
L=D+i§1 Z )‘ij [(xi-xj)+(yi'¥j)+(zi-z

where
L = the Lagrangian function

*ij = the Lagrangian variables
So, the formulation of the problem now looks like this:

maximize

n-1 n
L=D+ 2 22 Ay [(x5-x
i=1

Jj=i+l

subject to

ahxg + bhyg + chzg + Shg = kh

Xy ¥s Z, D, S, S: k>0

where
g = a subscript for the 1 through n points
h = a subscript for the 1 through f boundary constraints
i=1ton-1
j=i+1lton
n = the number of points

22
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NS f = the number of faces

surplus variables for the distance constraints

(7]
]

= slack variables for the boundary constraints

(%2}
=
[fe]
J

: (xg, Yg» zg) = coordinates of point g

xij = Lagrangian variables

And that's it. We now have a nonlinear objective function and n « f
linear constraints. Additionally, the objective function is mathemati-
cally classified as convex because it is the summation of many convex
functions. This is somewhat unfortunate because if it were concave, the
problem would fall under a category of problems which could be solved
using convex programming; a solution technique which is widely used in
operations research. Before we leave this section, I would like to
mention one more thing. Originally, it was thought that the color spac-
ing problem had completely linear boundary constraints (i.e., that the

region was a polyhedron). It turns out that this is not the case. It is

indeed a convex polyhedron in the red, green, blue coordinate system, but
in the one that counts, the CIE L*u*v* system where distances are com-
puted, it is not. However, it is still convex and the general formula-
tion above still holds. Those constraints that are nonlinear can be
moved into the Lagrangian function in much the same manner as the dis-
tance constraints were, while the linear boundary constraints can stay

put. That concludes the problem formulation, and we are now ready to

Took at the solutions to some easy spacing problems.

23
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Solutions to Simple Problems

This is the section where the puzzle is solved. Although the
solutions here are for very simple problems and many of them can be
recognized intuitively without any trouble, some of them are not so
apparent. What I'm going to show you here are the solutions for spacing
2, 3, 4, 5, and 6 points in a square to get a feeling for the types of
solutions that can be expected from the spacing problem. Included is a
discussion of the mathematical aspects of some of the solutions and some
conclusions based on what we've seen.

Taking a Tlook first at the solution for two points (shown in
Figure 4), we can see that it is exactly what one would expect. The
points are in opposite corners. Realize also that there are actually two
possible optimal solutions that will yield the same value for D. 0Nne is
pictured here and the other would, of course, have the points in the
other two corners.

The solution for spacing three points is somewhat less obvious (see

Figure 5). It turns out that the points form an equilateral triangle

—_— /q .7\ i
/ / N
/ N
4
/ / N
’ / N
/ N
/ , N
Vd AN
Ve / N
/ / N

AN

/ / N

/ -
, / -

s / - -
/ I - |
7/ -
o . J
Figure 4. Solution for Spacing Fiqure 5, Solution for Spacing
Two Points in a Square Three Points in a Square
24
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(i.e., a triangle whose sides are of equal length) with one point in a
corner and the other two points on opposite faces at angles of 15 degrees
E from the corner point. And, not coincidentally, their coordinates are
(0,0), (1, tan 15 degrees) and (tan 15 degrees, 1), respectively, for a
square whose sides are one unit long., In addition, one can easily tell
that this problem actually has four solutions that are multiple optimal;
each one corresponding to a different corner point.

Spacing four and five points in a square is trivial. For four, the
points belong in the corners. The five-point solution is identical to
the four-point solution with the additional point going in the center of
the region (see Figures 6 and 7)., Incidentally, both of these problems

only have the one optimal solution.

F
N A 'i: Ai;.
\ s N s
\ / \ /
N /s AN ’
N / AN Vs
N / \\ Ve
N /
\/ N //
s ,.
/s \\ 4 N
s 7 N
s/ \\ / AN
AN
s/ N / N
4 7
AN AN
4 /
/ N\ Y ~
. P L P
Figure 6. Solution for Spacing Figure 7. Solution for Spacing
Four Points in a Square Five Points in a Square
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Now we get to the really exotic one. The optimal solution for
spacing six points in a square is shown in Figure 8. Is that what you
would have expected the solution to look like? If you're like most
people, probably not. 1 would have guessed that all four corner points
would be filled and that the two other points would be somewhere in the
interior. Instead, there are two carner points, one interior point, and
three points on the faces. The presence of a counterintuitive solution
Tike this one indicates that accepting human judgment for good solutions
may be risky. It further emphasizes the need for a computer generated
solution technique 1ike the one introduced here. Notice that the left
two-thirds of the region is identical to a skinny five-point solution,
and that the points in the right two-thirds form a diamond where all the
sides are of equal length. In all, there are six distances that are
identical--the four of the diamond and the two connecting the interior
point to the corner points--and they all correspond to the minimum
distance. Notice also that there are four multiple optimal solutions for

this problem,

Figure 8. Solution for Spacing Six Points in a Square
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That brings us to the conclusions that can be drawn from these

simple examples. First, it appears that the points generally tend to

fall in the corners and the faces before they go to the interior of the

region, Second, the solutions are not always what one would expect. The

six-point prcblem yields a good example of that phenomenon. Third, most i
cf the problems have multiple optimal solutions, so that the decision !
maker can often choose between several alternatives. Finally, it appears ;
that the optimal solutions all have a high percentage of their distances é
identical, and equal to the maximized minimum distance. For instance,
the three-point solution has 3 out of the 3 equal to D, the four-point
solution has 4 out of 6, the five-point has 4 out of 10, and the six-
point has 6 out of 15, This means that one might be able to tell how !

good his or her solution is not only by the value of D, but also by the

number of distances that are equal to that value.

P o

Solution by Nonlinear Programming

Up to now, you may have been thinking that the problem looks inter- j
esting, but the mathematical formulation appears pretty complex. How
does one actually solve it? Well, there are several ways. You can write

a heuristic algorithm like Carter and Carter did, and like I did. Or you

can solve it intuitively if it's simple enough. Or you might be able to

use a computerized nonlinear optimization technique. This section will

| discuss one such nonlinear programming method.
]
[ [t was originally called the Method of Approximation Programming
Y (MAP) when it was first introduced back in the late 1950s by Griffith and
Stewart (7), hut now it is perhaps better known as successive linear pro-
e
E gramming (SLP). It works like this: Each nonlinear constraint is
-
‘ 27
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linearized using a first-order Taylor's series expansion. For those of
you who don't know, the Taylor's series expansion of an equation is just
a mathematical series of summed terms which approximates the original
equation and converges to the original with enough terms in the series.
Once the nonlinear constraints are linearized, the user selects a
starting set of values and solves the now completely linear problem using
linear programming (LP). The solution to that linear programming problem
is then used as the new starting set, and another LP solution is
generated. This goes on until the LP solutions become identical, at
which time the LP solution is also the solution to the nonlinear problem,

There are certain restrictions on the type of problem for which this
technique will guarantee an optimal solution, yet Griffith and Stewart
state that "problems have been solved with MAP which do not fully satisfy
all of these requirements" (7:379). The reason this technique was not
chosen to solve the color spacing problem is because of the size of the
problem, For example, in order to solve Carter and Carter's problem for
25 points, there would be 175 boundary constraints (some 1linear, some
nonlinear), 300 nonlinear distance constraints, and 76 decision vari-
ables. It is uncertain whether an LP program could solve that problem in
a reasonable amount of time, let alone solve it again for the second
closest distance, the third closest, and so on, as the heuristic algo-
rithm introduced in this thesis is able to do. Although this problem may
not seem like an impossible task for some commercial LPs, the primary
ohjective of this effort is to provide AFAMRL with a technique that
works. For that reason, [ chose to solve the problem with a heuristic

algorithm instead of SLP,

28
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V. Description of Heuristic

If you're reading through this section and it looks vaguely familiar
to you, it's not a case of precognition on your part, so don‘t call the
psychiatrist. It's because the heuristic described here is largely pat-
terned after that of Carter and Carter which was described in Sec-
tion III. However, there are some major and very important differences,
so don't think that you can skip to the next section because you already
know all about it, On the contrary, you should read through this entire
section if for no other reason than to please me. 1 will be extremely
pleased if you read the first portion which basically describes how the
algorithm works and some of the logic behind it. And, I will be ecstatic
if you read the second portion which identifies the differences between

this algorithm and Carter and Carter's.

The Algorithm

Recall that the purpose of this thesis is to maximize the minimum
distance among n points in a convex region, and then as a kicker to suc-
cessively maximize the second minimum distance, the third minimum, and so
on, until all points are optimally spaced. The first step in achieving
this objective is to randomly place the points uniformly throughout the
region. For the color spacing problem, it would look Tike the one shown
in Figure 9. Recall from before that this region is not a polyhedron,
although Figure 9 depicts it as one. The actual color spacing region

would have many of its boundaries bowed out slightly. Because they are

29
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Figure 9. Approximate Feasible Region for the Color Spacing
Problem in the CIE L*u*v* Color System

bowed out and not in, the region is still convex, so the solution
technique described here still applies.

In step 2, the program finds the minimum distance among all n{(n-1)/2
pairs of points, and the endpoints that correspond to that distance. The
third step is to define the 27 alternative locations for each of the two
endpoints found in step 2. These alternatives lie on a unit cube around
the endpoint whose sides are twice the step-size in length. Figure 3 on
page 9 depicts these alternative endpoint locations,

In the fourth step, the alternatives are checked to see if an

improvement can be made by moving the endpoints. The program does this
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by first checking the alternatives to see if they are in the region.
Then, taking one legal alternative at a time, it checks the discance
hetween endpoints to see if that value is greater than before. Next, it
checks the new overall minimum distance to see if that is greater., If
all of those conditions are successfully met, then the endpoints are
moved and the routine checks the next alternative for an even greater
possible improvement. [t does this for every possible combination of
alternative endpoint locations; a total of 729 combinations. If several
alternatives have the same overall minimum distance, which is likely, the
tie goes to the alternative producing the greatest distance between
endpoints.

The program then returns to step 2 and finds the new overall minimum
distance and the endpoints that correspond to that distance, This 1q0p
continues until no improvement can be made with the given step-size. At
that time, the step-size is halved and the program begins looping again
starting at step 2. This halving process continues until the step-size
reaches some minimum value chosen by the user and we enter step 5.

The fifth step controls the fixing of points already maximized and
the status of the program. When the step-size reaches its minimum toler-
ance, one of the endpoints is fixed in its position, the step-size is
returned to its original value, and the program returns to step 2. The
only difference in the logic now {other than a point being fixed) is that
the minimum distance calculated in step 2 can't have two fixed points as
its endpoints. This enables the program to concentrate on the second
shortest distance. The fixing of points continues until all the points
become fixed, at which time they are all unfixed and the routine starts

all over again at step 2 as if the current location scheme were the
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starting positions, If the program runs all the way through again and
the points haven't moved, then the program is done. Otherwise, the pro-
gram keeps going until there 1is no change in location for one complete
iteration. Figure 10 contains a flowchart of the program's logic, while

Appendix C contains an example of how the program optimally spaced four

points in a square.

Differences with Carter and Carter's Method

As [ said at the top of this section, there is a striking resem-
blance between Carter and Carter's method and the one described here.
However, there are four major differences which 1 would like to discuss
at this time.

The first of these differences lies in the checking of alternatives
to see what expanding move should be made. Carter and Carter move only
one endpoint at a time and, therefore, choose between only 52 possible
endpoint location schemes (26 for each endpoint). 0On the other hand, the
Roley algorithm moves both endpoints at once and, as a result, has a
total of 729 possible endpoint location schemes. I[t's just a more
exhaustive search for the best possible move, that's all.

Along the same lines, Carter and Carter's method ranks the alterna-
tives as to how much they increase the distance between endpoints and
then chooses the highest ranking alternative that also increases the
overall minimum distance. 0On the other hand, my program chooses the
alternative that most increases the overall minimum distance with ties
going to the alternative which causes the greatest increase in the end-

point distance. The difference is that Carter and Carter's algorithm may
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Figure 10. Flowchart of Roley Heuristic
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not choose the best alternative for increasing the overall minimum dis-
tance, whereas mine does.

Another difference has to do with the thoroughness of the spacing
method. Carter and Carter maximize the minimum distance but leave the
second minimum, third minimum, and all the others where they are. My
algorithm not only maximizes the minimum distance, it successively maxi-
mizes the second minimum distance, the third minimum, and so on until all
points are optimally spaced. The result is a complete optimization of
all distances, not just the minimum distance. The price is a more com-
plex and slower computer algorithm,

The fourth and final difference has to do with the respective coor-
dinate systems that are used as the primary operating spaces. Carter and
Carter's technique spaces points in the red, green, and blue color sys-
tem, and converts the colors to CIE L*u*v* color coordinates in order to

calculate spatial distances. My program acts in a reverse manner. It

maneuvers points and calculates distances in the CIE L*u*v* system, but
checks color locations in the red, green, and blue system to make sure 4

thay are within the boundaries of the region. It was originally hoped

-

that all operations and calculations could be done in the CIE L*u*v*

system for increased efficiency, but the equations for the boundary con-

straints could not be derived in the L*u*v* system, preventing its use as X

a location checking coordinate system.

& s s
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VI. Results

Now that you know how the thing works, let's find out how well it
works. There are several questions that need to be answered in this
section. Does the algorithm guarantee an optimal solution? Does it work
for very large problems? How well does it perform in comparison to
Carter and Carter's method? What are some of the factors to which the
program is sensitive? What are its biggest advantages? What are its
biggest disadvantages? These are the questions that will indeed be

answered in this section.

Optimality

The algorithm does not gquarantee an optimal solution. However, it

was tested on a number of problems whose solutions are known and the
results are encouraging. These problems include spacing three, four,
five, and six points in a square and spacing eight points in a cube. b

Each problem was tested with three different sets of randomly placed a

points and the algorithm produced the optimal solution in 14 of the 15
problems. That's a success rate of 93 percent. The only unsuccessful
attempt involved one of the tries at spacing five points in a square. In

that instance, the minimum distance arrived at was .638 units compared

with the optimal solution of .707, so that it was within 90 percent of
optimal. In general, the more replications that are performed, the

better chance of success.
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Size Limitations

This may be the largest downfall of my program. I had originally
intended for it to accommodate up to 50 points and 10 faces. However,
the largest problem it has been able to successfully solve was the color
spacing problem with 23 colors and 7 faces. Larger problems exceeded the
time limit of 1000 CPU seconds on the CDC 845 (Cyber) computer. The
reason for this size deficiency boils down to the thoroughness of the
program. Each iteration checks n{(n-1)/2 distances for up to 729 alterna-
tives. It takes 21 iterations for the step-size to reach its minimum
value. The program must perform those 21 iterations for each of the n
points that are fixed in succession. It then goes through the whole pro-
cess at least one more time or until the point locations do not change.
Experience has shown that it wusually goes through twice. With an
increase in n, the number of computations (and thus the CPU time
required) goes up exponentially, so one can easily tell that size is a
serious factor. Presumably, reducing the number of alternatives,
increasing the minimum step-size, or reducing the amount of point fixing

would increase the ability of the program to handle larger problems.

Performance in Comparison to Carter and Carter's Method

The comparison of my program with Carter and Carter's was done with
identical color parameters of YO’ ud, vd , and the chromaticity coor-
dinates of the guns. Table I contains comparative results for spacing 3,

4, 6, 10, and 25 colors.
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TABLE T.

COMPARISON OF MINIMiM DISTANCES

Average Computer
Time Per Replication

Number Number
of Best Answer of Repli- CDC 845 UNIVAC 1182
Colors Method (CIE L*u*v*) Variance cations (sec) (sec)
3 Roley 229.26 1.17 5 23.50
Carter 239.33 .11 49 1.31
4 Roley 156,28 136.62 5 42,95
Carter 155.87 37.14 50 1.76
6 Roley 124,85 79.61 5 100.49
Carter 124.08 62.45 50 2.48
10 Roley 71.07 48.61 20 178.90
Carter 89.43 27.73 50 4,22
25 Roley 0.00 0.00 5 >1000.00
Carter 51.60 7.34 46 12.39

As an explanation, [ originally intended to perform only five
replications for each problem because time considerations prevented me
from performing 50 runs as Carter and Carter did. However, 1 ended up
doing 20 runs of the ten color problem to try to decrease the great
disparity of results. Also, I was unable to successfully execute the 25
color problem because the CPY limit of 1000 seconds was exceeded for each
attempt.

It is difficult to compare this algorithm with Carter and Carter's
because there are so many factors that can be used as a measure of effec-
tiveness. Most people, however, would consider the minimum distances

produced by each method as their primary concern., Notice in Table I that
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the minimum distances are very similar for spacing 3, 4, and 6 colors
although Carter and Carter's results are based on approximately 10 times
more runs. The case of spacing 10 colors is perplexing. One would
assume that the results would again be equivalent because the techniques
are so simitar. Apparently, that is not true. My heart tells me that
something is wrong, but it is difficult to confirm Carter and Carter's
results because those actual color locations were not published and are
not available at this time. Perhaps an even greater number of replica-
tions would yield a better solution. In the meantime, I can only admit
that my algorithm is deficient for spacing larger numbers of colors.
Another criteria one might use to judge the two methods would be to
compare the distances between the second closest points, third closest,
and so on. This would indeed be an appropriate measure because the fun-
damental conceptual difference between the two methods is that mine
concentrates on successively maximizing all distances, whereas Carter and
Carter's maximizes only the minimum distance. Presumably, these efforts
should have paid off, but it is difficult to judge because of a limited
sample size. Table Il presents a comparison of distances for the six-
color spacing problem. I would have liked to compare other problems in
addition to the six-color one but it was the only one that was published
and available, so the sample size isn't quite what one would need to make
a definitive judgment. Notice, however, that the first three distances
are slightly better for my algorithm, the next six are fairly even, while
the last six are clearly in Carcer's favor. This could indicate that,
while maximizing the second and third minimum distances produces better
results for those values, it may cost in the long run in the form of

smaller values for the greater distances. Notice also that the first
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3 COMPARISON OF ALL DISTANCES FOR THE SIX-COLOR PROBLEM
: ith ith ith

Ei . Minimum Minimum Minimum

v, v, W

§
.

—

L A
T

W Yo ey W YW T T %
! P

Distance Roley Carter Distance Roley Carter Distance Roley Carter

lst 125 124 6th 129 130* 11th 182 218*
2nd 125* 124 7th 136* 133 12th 201 237*
3rd 125 124 8th 138 140* 13th 220 239*
4th 125 125 9th 149* 147 14th 239 249*
5th 125 125 10th 171 210* 15th 241 263*

*Denotes the superior value.

through sixth distances are basically the same regardless of whether or
not they are maximized. They seem to have been automatically maximized
by maximizing the minimum distance. That indicates that successively
maximizing higher distances may not be worth the extra computer time
required. These results also support the observation that was made in
Section IV that optimal solutions will generally have several distances
equal to the minimum distance. It is a characteristic that could be
extremely useful in determining whether or not a particular solution is
close to optimal.,

One might also be impressed with my method if it could take Carter
and Carter's best solution for a particular problem, use it as a starting
location scheme, and improve upon it. Using Carter and Carter's six-

color solution (because it was the only one available) as an initial set
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of colors resulted in a mild improvement of the minimum distance from
124.026 CIE L*u*v* units to 124,145 units. Research by Carter and Carter
has shown that distinguishability between colors "deteriorates rapidly
when the distance between colors is about 40 CIE L*u*v* units," (2:2937)
so this slight improvement of .12 unit is inconsequential. Perhaps more
importantly, my algorithm improved on 11 out of the 14 ~ther distances
with one unchanged and two decreasing slightly. You may have noticed
that the original distance of 124,026 does not correspond to Carter and
Carter's calculated value of 124,08 as shown in Table I. Taking their
same set of color locations in red, qreen, and blue coordinates, 1 cal-
culated a minimum distance of 124.026 1in L*u*v* coordinates instead of
124,08 (the exact L*u*v* coordinates were not published). The difference
is probably due to roundoff error. But, how does one explain how I could
improve on their optimal solution with basically the same technique?
Accuracy. Because Carter and Carter's minimum step-size is one unit,
they are not able to attain the same level of accuracy as my heuristic
does with a minimum step-size of .0001 units. Consequently, the Carters
are not able to "snuggle" their points into the best locations. All this
indicates is that the minimum step-size is a control over the level of
accuracy one wishes to achieve.

As was briefly discussed before, the question of computer time may
also be an important performance characteristic by which to judge the two
methods. Theoretically, Carter and Carter's method should be consider-
ably faster because it maximizes only the minimum distance and isn't
concerned with the second minimum distance, third minimum, and so on.
Looking again at Table I, we can see that this is, in fact, the case. It

should be remembered, however, that comparing run times on two different
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computers is somewhat like comparing apples and oranges and should be
taken with a grain of salt.

‘ As far as those at AFAMRL and 1 are concerned, the chief criterion
for comparison is which program works. I personally know of no place
where Carter and Carter's algorithm is currently running and several

li ) places where people have tried to implement it and have not been able to,

AFAMRL included. On the other hand, my program is one for one so far so

; it must be given the edge. Interested parties will be delighted to find

out that my program is heavily documented internally, easy to understand,

SeE

utilizing «classic structured programming concepts and written in
FORTRAN 77. These characteristics give my program the added advantage of

being easier to modify and/or upgrade by others who may be so inclined. #
A listing of the code is contained in Appendix B for all to judge for
themselves.

Briefly summarizing this section, we found that Carter and Carter's

T

-

method works equally as well for finding the maximum minimum distance,

but requires more runs. For the six-color spacing problem, theirs
yielded slightly worse values for the second and third minimums, and much
better results for the greater distances. Carter and Carter's program
takes less time, but has a slightly lower degree of accuracy. Unlike
Carter and Carter's, my program works, is well documented, and easy to

understand.

Sensitivity to Parameters

The program introduced in this report is highly sensitive to four

[

parameters, They are the maximum step-size, the step-size reducing

scheme, the minimum step-size, and the initial random positioning., The

e —— - - —y — ¥ ¥
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maximum step-size is important because some solutions are not obtainable
for certain step-sizes and point locations. Take, for instance, the case
of spacing eight points in a cube whose sides are one unit long. Suppose
seven of the points are in the corners and the eighth is in :ne very
middle of the cube. The eighth point should migrate to the empty corner,
but unless the step size is greater than one-third of a unit, the minimum
distance will decrease if it tries to move in any direction. Essen-
tially, the point is "locked in" to its location. To avoid this problem,
[ recommend using a maximum step-size equal to approximately half the
distance between the two farthest points in the region. This way, a
point located in the middle can move to any other spot in the region.
Granted, a point doesn't necessarily have to be in the middle to be
locked in. Let's say the eighth point in our example above is not
located in the exact middle. Let's say instead that it is Jlocated
towards the empty corner but less than one-third of a unit from the
middle. A step-size of .5 now puts the point out of the region, so it
still can't move closer to where it's supposed to be. If the step-size
is halved, the point still may not be able to go towards the corner,
But, some other step-size reduction scheme like reducing it by four-
fifths might send the point to the optimal solution. In that sense, the
reduction scheme is another factor which could affect the solution. The
problem with that alternative is that it takes quite a few more itera-
tions. For instance, to go from .5 to .0001 by halves, it takes 13
iterations. To go from .5 to .0001 by four-fifths takes 39 iterations.
More iterations means more computation time and, thus, a less desirable

program, The Carters and I both used a halving scheme, but I would
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recommend that any user experiment with this parameter to find out what
is best for his or her application.

The minimum step-size, although a factor to the solution, is not as
important as the two parameters discussed above. The minimum step-size
controls the accuracy of the solution. For three decimal places of
accuracy, .0001 should be the minimum step-size. For two places, use
.001, and so on. Increasing the minimum step-size can cause a surprising
decrease in the number of iterations required. For instance, it takes
only six iterations to go from .5 to .01 by halves as opposed to 13 iter-
ations to go to .0001,

The final parameter that significantly affects the solution is the
seed. This is the starting value that is used in the random number
generating sequence which calculates the starting locations for the
points. One can intuitively realize the importance of the seed by under-
standing that some initial location sets are better than others. A bad

location set is shown in Figure 11. None of the points in that example
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Figure 11. Example of Locally Optimal Solution
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can move 3anywhere without getting closer to another point, and yet the
solution is not optimal. It is called a "locally" optimal solution as
opposed to the "globally" optimal solution which has a point in each cor-
ner. Spacing problems apparently tend to have many local optima. Chang-
ing the seed and doing numerous replications will increase the chances of

finding a global optimum,

Advantages

The heuristic algorithm described here has numerous advantages.

Here is a list of some of them:

1. Flexibility. The program works for any spacing problem
including the color spacing problem. It has a myriad of uses
in the field of optics, as described by Carter and Carter
(2:2939). It can even be extended to four dimensions for
possible use 1in the field of physics. [t can accommodate
distance formulas other than the Euclidean distance formula or
convex regions besides polyhedrons. 1Its uses are limited only

by the limits of the imagination.

2. Simplicity. It is simple to understand and simple to use. The
structured FORTRAN programming format makes it simple to modify

or debug.

3. Reliability. It has been tested favorably against simple
problems with known solutions and more complex problems like

Carter's color spacing problems. It has proven to produce good
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answers with fewer replications than previous solution

techniques.

4, Successive Maximization. [t not only maximizes the minimum
distance, it successively maximizes the second minimum, third )
minimum, and so on. Because all points and their distances in T
relation to each other are important in the spacing problem,

this is a more appropriate objective. i

Nisadvantages

Here is a list of the method's major disadvantages: i

1. Optimality. The method does not quarantee a globally optimal

solution, nor does it guarantee even a locally optimal solu-
tion, It Jjust guarantees a "good" answer and it may take 3

several runs to get that "good" answer. R

2. Size Limitations. The program has been proven on a problem of
at most 23 points and seven faces. There is no guarantee that )

it will work on very large problems. Computer time is the key

I .. TV

resource here because computer time required increases exponen-
tially as the number of points increase. It's up to the user -

to weigh the value of his or her computer time to the value of

ek I A

a solution.
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VII. Summary

Y
el IA

I hope you've enjoyed this 1little trip into the world of poly-

hedrons, colors, and the like. If you've already forgotten what we've

5. NG

learned, here's a quick refresher. After being introduced to the spacing
problem, we learned of some examples in the real world, most notably the
color spacing problem. We were educated on the theory behind the color

spacing problem and we found out how Carter and Carter proposed to solve

A_A._‘:‘JA.-'

it. Next, we learned how the spacing problem is formulated mathemati-

cally and were able to see some solutions to simple problems. We also
found out how the problem could be solved using successive linear pro-
gramming. Next, we were introduced to a new heuristic algorithm, very

similar to Carter and Carter's, that is designed to solve the spacing

problem. Finally, we found out how well the new algorithm works. It is

now time to identify our conclusions and some suggestions for further y

research, 3
L,

Conclusions
The program works. That was the main objective of this effort so in j
" that sense, I have accomplished what 1 set out to do. Perhaps equal to g
f, that was the objective of providing AFAMRL with reasonable answers to the E
f: color spacing problem that are better than educated guesses. 1 belijeve ;
r. that the algorithm does that as well. An objective of my research also K

3 was to improve upon Carter and Carter's method. Well, it is difficult to

q compare the two because time constraints prevented me from doing a full

{ statistical analysis. But, if you consider that my method runs, is easy
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to understand and use, and yields solutions that are comparable to Carter
and Carter's, one must consider it an improvement.

To be honest with you, I originally thought that Carter and Carter's
algorithm was a crude first attempt generating suboptimal solutions which
could easily be improved upon. It is a credit to their work that those
solutions are apparently not so crude. But it must be remembered that
regardless of which method is used, they both require numerous replica-
tions to come up with an answer that is only guaranteed to be "good." So

there is still plenty of room for improvement.

Suggestions for Further Research

There are two directions that subsequent research in the area can
take. One is to refine the new algorithm., The other, and most exciting
alternative, is to solve the spacing problem using some form of nonlinear
programming., The method described in Section IV of this report has some
definite possibilities, but the difficulty is that the constraints of the
color region are not linear and are very difficult to derive mathemati-
cally. I could not solve for them during my work on this thesis. Carter
and Carter describe the region as "approximately a triangular prism," but
nowhere 1in the literature is there a mathematical formulation of the
boundaries (2:2937). This could prove to be a major stumbling block for
anyone attempting to solve the color spacing problem using nonlinear
programming.,

Alternatively, there are numerous improvements that could be made to
my new algorithm as well. The most worthwhile appears to be the use of
vectors and matrices to help define possible new positions for the two

closest points. The present method disregards any alternative that takes
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a point out of the feasible region. A method could be devised that would
instead take the point to the boundary of the feasible region and still
consider it as a viable alternative. Indeed, it may be a desirable move
because of the tendency of the points to migrate to the boundaries and
corners of the region. The trouble with this method is that it too only
works for linear constraints. Colors would have to be spaced in the red,
green, and blue coordinate system, which has linear boundaries, and then
transformed into L*u*v* coordinates to calculate the distances, much in
the manner that Carter and Carter's algorithm does.

Another interesting improvement would be to use a concept called
"simulated annealing" to help space the points. In this method, the
points would be able to actually move closer together in order to even-
tually achieve optimal spacing. Refer to Kirkpatrick, Gelatt, and Vecchi
(9) for more on this possibility.

Other less drastic refinements might be to make the program inter-
active, more user-friendly, or perhaps include a color-naming subroutine
that would give the user descriptive names of the colors selected. Also,
improvements might be made to the speed and efficiency of the program., I
have thought of a three-phase system of varying the maximum and minimum
step-sizes and the step-size reducing scheme to hopefully get consis-
tently better answers more quickly. It would consist of starting out
with large maximum and minimum step-sizes and halving the step-size at
each iteration. This would place the points in a roughly spaced con-
figuration. The next phase would have a much smaller maximum step-size,
reducing by four-fifths to the same minimum step-size. This would refine
the points to what one would hope to be a rough global optimum location

scheme. Phase 3 would concentrate on further refining the locations and
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the accuracy with a very small maximum step-size and a miniscule minimum
step-size, The composite result would hopefully be impressive.

Yet another improvement would be to selectively place the points in

the corners of the region then place any remaining points randomly on the
faces, rather than randomly placing all points in the interior of the
region as an initial location scheme. This procedure would conform more
closely to the observations made in Section IV regarding simple problems.

The biggest deficiency of this thesis effort was that the algorithm

was never fully tested statistically to properly compare its results with

A A _ANEESA A & A M. m . A s

those of Carter and Carter. It is highly recommended that any future
effort include extensive tests of this nature. I have found the topic to
be interesting, important, and satisfying, and am sure that anyone else

who pursues research in the area will gain similar satisfaction.
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Appendix A. Color Transformations

This appendix briefly describes the transformations from red, green,
and blue color coordinates to the CIE L*u*v* color space. If we let (YR,
Yg» YB) be the luminances for the CRT's red, green, and blue guns,
respectively, then the first task is to find something called the tri-

stimulus values (Xy, Yy, Z7). This transformation is given by the fol-

lowing matrix operation:

XT XR/_YR xG/yG XB/_YB YR ‘
Ir 2RIYR 26/¥6 Zg/yg| |V :

where

(xg» YRs 2Zg) = the chromaticity coordinates of the red gun

(xG, Y6 zG) the chromaticity coordinates of the green gun

. (xB, ¥gs zB) = the chromaticity coordinates of the blue gun

-

- These chromaticity coordinates correspond to the locations on a chroma-
q

s ticity diagram of the red, green, and blue colors corresponding to that
f particular cathode-ray tube gun, and are values between zero and one. In
- addition, x + y + 2 = 1 for each gun.

|

{ The next step is to find the u” and v~ values for each color. These

values correspond to the color's location on the CIE-UCS chromaticity
diagram shown in Figure 2. The transformations are given by: a

¢

&

[

¢

3
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2 = 4x/(-2x + 12y + 3)

2 = 9y/(-2x + 12y + 3)

<
(1}

x
[l

= Xp/(Xp + Y7+ I7)

y = Yo/ (Xy + Y1 + 171)

The final step is to convert from (Yr, u”, v°) to (L*, u*, v*) coor-

dinates. This is accomplished by the following set of equations:
L* = 116 (Y7/¥g)l/3 - 16
u* = 13 L* (u” - ug)
ve = 13 L* (v© - vg)
Yo = the value of Y1 when all three guns are turned on fuyll
blast, producing a pure white color
ug = the value of u” for pure white
vy = the value of v~ for pure white
That's all. Pretty simple isn't it? The reverse transformations are

equally as simple and are contained in Appendix B (which is just a

listing of the program) among the coding of subroutine "RGBOUT."
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Appendix B.

FORTRAN Code and Documentation

52

"
.
e
R
!
o
L
]

5 TN

i

.




> Mh AL Jnas Jng e Jede B o ieth Jau - Bl et Shdh Jafl Siait Sl ~Radt NI UL

3

f

Appendix B, FORTRAN Code and Documentation
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MO TN PROGERMAM

THE FURFOSE OF THIS PROGEAM IS5 TO MAXIMIZE THE HINIMUM
DLSTANCE AMONG N FOINTS IN A& CONVEX THREE-DIMEMSTIONAL. REGLION
AND THEN SUCCESSIVELY MAXIMIZE THE SECOND SMALLEST DISTANCE,
THE THIRD SMALLEST, AND S0 ONM, UNTIL ALL FOINTS ARE OFTIMALLY j
SEACED. THE REQUIRED INFUTS FOR THIS PROGRAM ARE THE NUMRER :
OF FOINTS BEIMG SFACED (M), THE DESIRED INITIAL STEF-SIZE (SIZE),
THE NUMBER QF CONSTHAINTS (FACES) OGN THE REGLON (F), aND THE
EQUATIONS OF THOSE CONSTRATNTS IN THE FORM AX + BY + CZ < K .
THE FROGEAM THEN QUTFUTS THE GFTIMAL VALUES OQF Xy Yy ANN Z,

AN THE FIRST TEN (OR SOME OTHER NUMHER CHOSEN RBY THE USER)
MINIMUM DISTANCES.

¥ W

NOTE D THROUGHOUT THIS FROGRAM, Xy Yy ANU Z AaRE USED TO DENQTE
THE LOCATIONS OF THE FOINTS REING SPFACED AND CORRESFOND TO

Ly Wbk, AN VW FOR THE COLOR SFACING FROBLEM.  THIS SHOULIN NQT
BE COMFUSEDR WITH THE TRISTIMULUS UaALUES OF A COLOR WHICH ARE
COMMONLY REFERRED TO A% CAFITAL Xy Yy ANI Z IN THE TRAIE. 1IN
THIS FROGRAM, THE TRISTIMULUS VALUES WILL BE REFERRED TO A3
XTOTAL, YTOTAL, AN ZTOTAL .

LB s aae s AR

THERE AaRE SEVERAL NOTES TO THE USER TN THF PROGRAM WHICH

ARE UGED TO SLGNIFY PLACES WHERE YOU MAY ol REQUIRED TO MAKE j
CHANGES . THIY aARE SUMMARIZED HER: FOR YOUR CONMVENTENCIE . A

DM

THOTHE MAIN FROGRAM, THF USER TS RBFQUIRLD TO SURFLY THIE
MUMBEFR OF POINTS TO £ SPACFU,  THE Sl FHE daxX Tl STER-8T.050,
THE MIMIMUM STER-GTZE AN THE STERF-STIRN BFEIUCENG SCHEME (N
SURROUTING FLACE-FOIMTS,y T HUST SUPEPLY  THE MaXa UM aND HEIN-
TMUM VALUES ALLOWARLE FOR Fach OF THE THERER COORDINATES. IN
SURROUTINE FENU-LISTAMCE , THE USSR (ST CHOOSE THFE NUMBER OF
CISTANCES HE WMISHLS TO AFEEal O THE PROGEAM S OUTRUT.
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Voot U G e i THE Wi ARG SHOUL D UsUALLY
| 31 R S ST I YU (O ANTECT RN, A QTHER UakIabinh ST1TAaY THE SaME
EXCERT Finy THE VA tiss 0F Ky KO T8 THE MAXINAUM ALLOWARLF
PO RAMCL Yo w100 S ol THED KETC GUN . K23 = THE MAX TRt
GREEN GUS T Ui o b e i Macdidii BLOE G L L TRAMCEH
N AT PUE cibet bty DOV ed D U MARCE YOU WS g ERMIET LT
S T e b A D TR T TR WAL

Litocitebende s by b b ety e Ol R OUTERE Y CHAMGD VS TTHE

LE N R N VR I B H T PR S IS T e B I A I R

FOTDCr o Gt iHG PROBLEM Dy SUREREPTENE REROUWT TS YERY
DM RTY AT . PVHORE . THE WulEr MUST SUFRPLY THE CHROMATICITY
COORTCMATES OF THL GUNG,  THE MAXTMIM LUMINANCE ALLOUARLE
CLANOTY e AND THED VALUES OF U FRIME NOT ASME V-PFRIME NOT,  THAT
TOOTHE VTR QF THIED CHAMGE S THAT MNEETC TO BE MADE FOR ANY
MORMSL USE OF THLS PROGRAM.
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VAR ARLE DR FTNITIONS

REAL VARTARLEG!E
XCDr= A& ONE-TEMENSTONAL, aliey CONTATINING THE X-COORNINATE OF
FOTMT T

YOId= THE Y-COORUINATE OF FOINT T

ACD)= THE Z-C00NRGEMATE OF FOINT I

ULy D= THE FEUCLITEAN DISTANCE RETWEEN POINT I AND FOINT U

Cal = THE CURRENT MINIMUM DISTANCE RETWEEN ALL FAIRS OF FOINTS

MEWT THE NFW MINIMUM DISTANCE

STZE= THE STYEF-SIZE

ENOX T = THE X-COORTINATE OF FENIFOINT I, WHERE THE ENIOPQINTS

ARE THE TWO CLOSEST FOINTS IN THE REGIUN

ERHOY Ty THE Y-COORDINATE OF ENUFQINT I

EROT O Ty THE 20X TOINATE GF ENIFEQINT X

ALTXOT 3= THE OTH AL TERNASTE LOCATION FOR THE X-COORDINATE QF
EMTFQTHT X

ALTY O D THE FTH AL TERMATE LOCATION FOF THE Y-COORUINATE OF
ERUDEGIHY T

ALTZCT ¢ D0 THE JTHE Al TERMATE LOCATION FOR THE Z-COORTTNATE QF
FROIHT

PRy THE Y- COORDUMATE OF FOGINY T FROM THE FREVIOUS ITERATION

PO T T -CO0ROT AT O FOTHT T FROM O THE PREVIOUS ITERATION

PHOPLS O de THE Z-COMRDTNATE (0 POINT T FROM THE PREVIOUS TITENATION

OURTL T DU S UMY VAt lAaRL RS REQUIRED FOR SURKRDUTINE RGROUT

BUT NOT USED TH THE MATN FPREOGRAM

SET L THE STARTING VAL FOR THE RANTOM NUMRBER GEMERATING SEQUENCE

THTHED CYRET KNOWN A8 SUBRQUTIMNE “RAMSET

~ ‘~
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FROGRAM SHEACHT

REAL X GO, YO0, Z(H0) TS0 500 y CAFD NEWI, QTZE ENDX(2) yENDY (2) ,
% ENOZC2Y oy ALTTXC2,27) g ALTY 2,270y ALTZ2,27) y MEMX (50  MEMY (50),
% MEMZ (S0 , TIUML CO0) y BUM2 (500, (U2 0S50 )Y , SEFD

INMTEGER  MyENDFTLFNMUFT2

CHARACTER STATUSXEA,STATRT (S0) k1

EXTERNAL RANF

OFENM (3, FULE="5PC0UT 7))

REWINMD 3

T0=3

FO0=3

C """ = IMPORTANT NOTE TO USER ~-

THE USER MUST SURFLY THE VALUE OF N AND STZE HERE, ANO THE SIZE

APFROXTMATELY EQUAL TO ONE-HALF THE DISTANCE RETWEEN THE TWo

(

c

C AGATH Ti SUBROUTIME FLX-FOINT,” T RECOMMEMIN USING A STEF-SIZE
€

f

" THE SaME FROPLCEN WITH

FARTHEST POIMNTS IN THE REGION, BUT THE USER 18 ENCOURAGED TO T1RY
AL DIFFERENT MAXITMUM STEF-STZES TO
TIMNG AN OFTIMAL SOLUTION.

FHCREASE THE CHANCES OF

GIE=L3E0.0

M=10

GTAMG = THINE Y

ney 100 Tl N
STATHFT(L)="17
MO 2000
MEMY (L) =0.0
MEMZOL =00

100 COMT MU

C w= IMPORTANT NOTE TO USER -~ a0

2
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l GEQUH MUT W bedd o iy CHOSE S o pb v ral LOGCA D Hans
C FOTMT S, TTO1S RECOMMENGET THA M TR e BUS RBE TR O
(" AL PROELLMS . T WHTECH Cane THE USER sHOUD T CHANGE THY
0
(

‘w MR i. 2 a s b_a b

t
{
13

FormCH N LT ocar B ANY MINE UG IMiEGLIR.

GE R TRY AT 2T L0
W ETF (5, 1 1081
110 FORNATCLEY, CTHE SEFO = b 111
CPHIS SECT LU CALCULATES ThE THITIAL LOCST LS ©0R THE FOTIS Al )
€ FORMATS ARD FILNTS THE LOUATIONG, .
CALL FANSET (SEETD
CALL FLACHT N X, Y o 7y SEETD .
WRITE(3,1720) .
120 FORMATCI1Y,  THESE aRF THE STARTING 1LOCATIONS ) !
CALL FRINT (X, Y, 7y N) '
CALL RGROUT (X, Yy 2 My DUML  TIF2 , BUME  GTATUS)
STATUG *FUN
€ THE MEAT OF THE FROGRAM BEGING HERE
130 CALL FINUOCX,Y,Z,MySTATET,CARD, ENDX, ENOY , EMIZ, ENDETL, ENDFT2,
& STATUS)
CALL DEFALTCENTX ENDY , ENIZ, STZE  ENOFTL ENIFT2, STATET,
& ALTX,ALTY,ALTZ)
CALL CHKALTIX, Y yZy Ny CARPT, ALTX, ALTY  ALTZ s STATET  ENIFTL g ENTETD  NIZUTD
CIF THE MINIMUM DISTAMNCE IS GREATER, THEN KEEF ITERATING
IF (NEWD GT. CAPTD THER
CARD=NENT
60 TO 130
C IF NOT, THEN REDUCE THE STEF-SIZE
EL.SE
GIZE=STZE/2,0
IF (SIZE .LE. .0001) THEN
NOTE: THE USEF MAY WISH TO USE A DIFFERENT MINIMUM STEF-STZE.
FOR THREE DECTMAL FLACES OF ACCURACY, T USE .0001. YOU
MAY ALSO WISH TO USE A SCHEME OTHER THAN HALVING THN STkF-
SI7E, LIKE REDUCING IT BY THREE-FOURTHS INSTEAL,
CALL FIXFTOX Y, Z Ny STATFT  ENTFTL  ENUFTR, 8126, STATUS,
& MEMX , MEMY y MEMZ)
TF (STATUS JEQ. “RUN‘Y THEN
G0 TO 130
ELSE TF (STATUS LEQ. ‘DOME’) THEN
60 TO 140
ENGTF

AR . L

. ) P

OO0

ELSE
GO TO 130
EMEIF
ENDEIF
C THIS SECTION CONTROLS THE FORMAT OF THE RESULTS
140 WRITE(3Z,150)
150 FORMAT (15X, THIS 18 THE FINAL ANSWER)
CALL FRIMT(X,Y,Z,N) .
CALL RGEOUT (X, Y, Zy Ny IUIML , TUMZ, DUMS3 . 8TATUS) oTC < s

O .
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TR R URT e THE S RalY Lh TO KA
L THE REGLION. Tl LITTLE VYRE SRV
CRED AN AR TREFUT e AND GURGLES Ul THE STaARTING 1.OUaTTONS FOR T
FOINTS (X, Yy AND 2 A5 QUTPLOTS.

A0 L ACE THE FOINTG
SOTHE MUMRIE OF FPOTNTS

{
(
t
(
( MOTE T THIES SURROUTING USES THE RANDTOM NUMBER GENERATING FUNCTTON
[ C TN THE CYRER CALEED PRANSET . MOST MAIN--RAME COMFUTERS HAVE
: & f RANTOM MUMEER GENERATIMNG lllﬂ‘IIITY; SO COMNSULT YOUR L.OCAL
(-
(
€
|

COMPUTER “XFERT FOR DIRECTIONS ON HOW TO USE IT ON YOUR FAVORITE
HYSTIEM.

0RO R IOICHHORCKORIOKOOIOIKOIOR SO OY R0 IOCOROIOR SOIOKICIORCK SCHORCROR IO NOIOROK S SOOI 0K

C

C . UARIARLE DEFINITIONS

{:

£ FEal YAaRTARLESS

G XCIy= THE INITIAL X~-COORODINATE FOIMNT X

. YOLy= THE INITIAL Y-COORDIIMATE OF FOINT I

G 20D = THE INITIAL Z-COORDINATE OF FOINT T

N YREDCD Y= THE RED FHOSFHOR LUMINANCE FOR FOINT X

YOREENCI) = THE GREEN PHOSFHOR LUMINANCE FOR FOINT I

YRLUECT = THE BLUE FHOSFHOR LUMINANCE FOR POINT T

SEEL= THE STARTING VALUE FOR THE RANDOM NUMBER GENMERATING SEQUENCE
IN THE CYRER KNOWN A% SUBROUTINF RANGET’

e s o
s

-

.v-q.,,..-‘,? ™
L
. .

PR 4

IMTEGER VARIARLES!E
M= THE MUMBER OF POINTS BEING 1L.OCATED
Jum THE NUMEER OF FOINTS REIMG TEANSFORMED RY SURRKQUTINF RGEOUT

L

CHARMCTILR VaRIARLES?

FQINT= THE LOCATION OF THID FOINT: ETTHER “ZINS QR C0OUT OF THE
REGLOM

DUel i TIMMY VARITARLE REQUTRED FOR SURRQUTINF "RGROUTS BUT NOT
LSE L IM THIS SUEBRNUTINE

T

-—

FoXTEReAL VAT Al s

b ReNE - A UARLARLE USED TN CONJUNCTION WITH “RANSETY TU GEMIRATE
b A EANUOM NUMRER RETWEEM ZERQ AMD ONE
b

b
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GULGIT T 0 T by Ny e ]
RE AL MO Y Oy S0 LR R TS0 s Y GIRE TN CHO)  YILUE (i)
ENTEGLE My
CHARACTLE ORI e
PXTEREAL RAr
N ran T,
A0 KOTP=RANF OV X100 0-2,0) 19,0
TP RANE (YT O 0L 0

PRI I S THI AR B A G R ATO NN OE S SN ¢ D IR AT IR ¢
£
C e ERME T AR D NOTE T0 USER
.

G PHE Ualilamb o SRaAn s GIVES Vol UG TN THE BANGE FROM ZERC T GNiE
TFOTHE USER WAHTS UALUDS QUTSTOE OF THAT RBAMGE, THE EQUATIMNNG
FOR X Yo AND Z, SHOULD LOOK LLIKE THLG?

KDY= RANE OO - XM TR XM I

YOI =RAMNS Y OYMAY-YMINY +7MEN

ST =RANF O X (ZMAX-ZHINY +ZMIN
WHERE MAX AND MIN aRE THE MAXTHMUM aMNO MINIMUM POSSIRLE VALUES
FOR Xy Yy AND 2y RESPFECTIVELY.

LA L,

, .
[ B
ez
[ R G RN S N

—

J=
CALL BOEROUT NI o YOI w200 p Jp YREDUD y YOREEN (D) , YRLUE (D) , BUML)
CAall, CHERFTOYREDCLY p YGREEMNCD) , YRLUECL) yFOINT)
IF CPOINT JEQ. “0UT’) THEN
GO TO 170
ENLCTF
140 CONT IHUE
N

— et aigae -

LA

AekscioreoerkcoR R ooiomsinielie o nieioseksoE ool oionoRIosiok:selsciolor oncoleiokoorekok

(
(
C SUERROUTIME FIND-DISTANCE
(

IN
P
.
’
N
-~

—

THE FURFOSE OF THIS SUBROUTINE 18 TO FIND THE MINIMUM T1s-
TAMCE BETWEFEM ALL MON-1Y /2 PATRS OF (UNFIXEDY FOQINTS. THE
ENFUTS FOR THIS PROGRAM ARE THEZ LOCATTONS OF THE FOTMTS (X,

C Yy ANTZ), THE STATUS OF THOSE FOINTS AS TO WHETHER THEY ARE

¥ FIXETE OF UNFIXER CSTATFTY AND THE NUMRBER QF FOINTS (N),  THE

j C FRUGHEAM THEN QUTFUTS THE MINIMUM BUCLIOEAN DISTAMCE RETWEEN

AL FATRS OF  (UMFIXEDD FOINTS, THE TWO FOINTS THAT CORRFSFOMI
f: TO THAT SIMNIMUM DISTANMCE CENTFTL ANMD EMGRT2)Y, AND THE

e C COORTINATES (F THOSE POINTS CENDX, FMNIY, AaND ENIZ),

[P

T "T,rvf_v,:,r.f ——ree ,-.—-rgﬁff
-
8

—p
—

C

(RO SIOAOIOR AR OACKNOR AR K IOR Y 8ACHOR SORIOR OROION SR 23 OR SCROK SOR CIOK KKK OR A 3O IO K K
C
C VAR LARLE T TNTTTONS

. C
C it Ve TAN e 1
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Ple TEHE MUMBER (07 POTNTS
PO v THE MURRER ABSOCTATED WY TH BN oLET 1

(

t

(

L.

( DRTTE GRS Uk b Al b
{

{

( ABSOCTATED WITH ENUROINT 2

VNG T 2= THE NUMENE
R THE COUNTEDR USETE N (RDERING T BISTANCES

C Lo THE HUMEBER OQF UXSiAN THE USER WISHES 70 PRINT
EYECO = AN FRIFOTNT COORESPORNOING TO THE KTH SMALYEST 00T,

C JAY (K= THE OTHe R EMOPOINT COORESFOMTIING TO THE KTH SHALLEST 041,01

C CHARACTER VARTARLES S
c STATHT D = THE STATUS GF FOINT U5 EITHER FIXED OR UNFIXED
C STATUS= THE STATUS OF THE FROGRAMY EITHER ‘DONZY OR CRUN

C
{2 300K RCICHOROICROKON ORRCH SORKOROR OO O 0IMOROK SOOI SRR YOI KOKSOKIOROR SORNOROKOKIOIOR SOk ok sk ok K
C
C

SURROUTINE FINOUCX Y o7 o N STATET o CAFT ENID  ENOY y ENUZ y ENMUFPT L FNIP T2,

& STATUS)
REAL  X(30) , YCEO) p 250N  CAPT ENOY C2) y ENDY (2 y ENDZC2) yU{E0,50)
& UIS(300)
INTEGER  NyENOPTL yENDFT2 K Ly EYE (00 JAY CE0M
CHARACTER  STATFT (S0 XL, 8TATUSYS
CAFL=10000.0
0O 200 I=1,N-1
0o 210 J=1+1 N
£ UNLESE BOTH FOINTS aRE FIXEG, CALCULATE THE BISTAMOE BETWEEMN T M
FO0STATRFTOY JEQ U COR. (STATETOD JEQ. 7U))
& THEN
C THIS T8 THD FEUCLTIIEAN TISTANCE FORMULA
COXy D) =BRT OO =X O Y& Y (T -y () okt
% (O -0 vk
TF b,y e LAl TN
CArlE=ncT,y
FMOUFTL =T
ENT 2
ENDIF
FNT T
210 COMTIMUE
200 CONTENUE
ENOXCL) =X CEMIFT L)
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G BESTANCES .

220

L&

250
240
230

270

280

Len X 2% 3 %%
270

g
FT

ALY
s

AN

BOO220 K1, 300
BESIRI=1000.0
COMNT IR
W 230 =1 g N-1
00 240 J=I+H1,H
o 250 Ke=j
TF o

ENTE T
CONTIMNUE

CONTINUE
CONTINUE
WRITE (I, 28001
g 290 K=1,L

WRITE (3, 2950EYE
COMNTINUE
VURTTEC3,270)
FORMAT Y 7))
FORMATOX, " THESE ANE
FORMATCL?X, "0C, 12,7
r

[
(BRSNS WS B BIR A A A A A v i A O A . O A
(
{

SUBKOUTINEG

THD FURFOSE OF THIS
ERHATIVE LOCATIONS FOR
FASHKED THE COORUINATES

OUTFUTS A& TWO BY TUEN

ANCE S ANTE i1 S THE L GRALLEST
FROGERSM TS DO

HEM

(F TELSTAMOCES HE WISHES To Gee ey
< HECAMN CHOOSE TO GEE U 10 300

u L

(Tpd? LT LG

o 260 M=LyK+ly-~1
DESM=LIS5(M-1)
EYE (M) =EYE(H-1)
JOY (M s dAY (M- 1)

CONMTINUE

OISR =T )

EYE{(K)=]

JAY (K=

GO TO 240

r."

THEN

CRDY p JAY (KDY TIPS IRD

THE 13,7 SHALLEST HISTANCES )

R SRS E R o D

RO B O B G B 1 @ A AR G N A A G D B G
DR INE AL TERMATIVES

SUERROUTINE TS 7O DEFTHE THE UANTOUS
ENTFOQINTS 1 AMNU 2, THE FROGRAM

OF THE ENUFOINTS AND THE STFR-S17F
MY -SEVEN ARRAY CONTATNIMG THE
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B30
320
310
300

THESE 1.Q0

. - . . LY - NI - - - . .
PP o/ T S U T A S T S A POy U S ST . S S

O RO L N O T I A N AL B B Y R VU S I PR S AU TUERGT DVE S T
I I N O Y I O B A L A 1Y S DO O X TR WO SRR 0 CR N U N C TS TR I
LETTH T N OITNT AT 1TSS CLERTER.

Ve LR TEFTNTTTONS

FEal Uakd Akl b
PMICOT 20 THED X-COORULHATE OF ENIFOINT I
FHE Y -LOQREENATE OF FEMAOPOLNT
OORDTINATE OF ENDFOLHT
T2k

ALY CLy by THE COORDENATE OF THE JTH ALTERMAT IV FOR

INTEGER VARTABLES?

ENUFPT L= THE NMUMBER CORRBESPONMUING TO ENUFQINT 1
ENUFTZ= THE NUMBER CORRESPFONIING TO ENOFOINT 2
Fra THE INIRX FOR THE ALTERNATE LOCATIONS

CHARACTER VARTARLESE
STATET Dy = THE STATUS OF POINT Iy FITHER FIXED OF UNFIXFD

SUMMOUTINE EFALT CENDX o ENDY g ENTE  STZE ENOPTL s ENIFT2y STATT T o LT X

5 ALTY y ALTZ)
REAL  ENIXO2) G ENTY C2) L ENIZ (), STZE  ALTXCR,27) 4 ALTY (2,27)
% ALTZ(2,27)
TNTEGEF  ENIFTLyENOET? 5
CHARACTER  STATFT (50) %1
S OLOAD THE ALTERMNATE LOCATIONS FOR ENDFOINTS 1 ANT
DO R00 Tl

e )

Lo 310 G=-1, 1

LI B30 Q-1 1
Jres b
P T ) s NI T ) BB TR
ALTY T )= EHOY (T ) ~RXS TR
AL TZOT ) NI CT ) - (ST Ik

COMNT INLIT

CONTITMUE
COMT TMUE
CONT TN

IF SO YaPT oM TLY JEQ. “F7) THEN

60

RO AR L ROIOIIOIDIT N SR RO R RO SOMOR MR RONOT ACRDION O OO AR OISR ROROR % b M

COMRTIINATE OF THE JTH ALTERNATIVE FOM FNUFOUINT
IO INT
ALTZOT D= THE Z-COORTUINATE OF  THE JTH ALTERNATIVE FOR ENIFOINT

R RION ROK OO0 A ICIOIOR R S0ICT S00 HOR0ICHIOM SCIOR OISR R ICICICIOR sk SOIORCR ORS00k R koloioek

e
o

P T S S P U

L
I

TEFOOME QF THE FNIPOINTS TS FIXU0, THEN 1T HAS MO ALTERNATE FOSITIONS
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SUBROUTINE CHECK-AL TERMATIVES

THIS SUBROUTINE CHECKS THE vaRIQUSs ALTERNATIVES TO SEE
IF THEY LIE IN THE REGIOGN, THEN TESTS THE REMAINING CANUIOATES
T SFE IF THEY INCREASE OR DECRFAGSE THE NISTANCE BETWEEN THE
ENTIFOINTS. IF THE DISTANCE I8 INCREASEX, THIS PROGRAM CALLS
SURROUTINE “FINUD-DISTANCE S TO SEE IF THE QUERALL MINIMUM
DISTANCE I8 INCREAGED OFR DECREASED.  IF 30, THE ENDFDINTS
ARE MOVED 7O THE aALTERNATE LOCATION THAT MOST INCREASES THE
OUVERALL MINIMUM DISTANCE WITH TIES GOING TO THE ALTERNATIVE
THAT INCREASES THE EMOPOINT DISTANCE THE MOST. IT THEN PASSES
THOSE MNEW LOCATIONS TO THE MAIN MROGRAM.

€

SFAT IS A ES TR ST TS ETE SRS CEPESCEITECETERECCERECT IS E e CEE

(YK

.‘

VARTARLE DEFINYTIONS

REAL VARTARLES:

XOId= THE X-COOROIMATE OF FOINT O

Y= THE Y-COORIINATE OF FOINT T

ZCD)= THE Z-COOROINATE OF PFQINT I

Carm THY MINIMUM DISTANCE BETWEER ALl PATRS OF (UNFIXERY FOINTS

ALTX T, = THE X-COORUIMATE OF THy I ALTERNATIVE FOR ENOFQINT X

ALTY (T D THE Y-COORICONATE QF  THE OTH ALTERNATIVE FOR ENIQINT 1

ALTZ Ly o THE Z-CO0RUTHATE OF  THE JTH ALTERMATIVE FOR ENOFOINT X

NEWIE THE NFW MINTHUM DISTANCE BETWERN ALL THE POINTS

CHRXCD) = THE X-COORDINATE OF FOINT T B8EING CHECRED AS A NEW
LOCATION SCHEMD BY SUMRGUYTTRE CFIND-DISTANCE -

CHEY CDy = THE Y--COOROTNATE OF PFOINT T SETNG CHECKER

CHRZ CDY= THE Z-COQRIINATE QF FOINT ¥ BETING CHECKET

DUML, TUM2, UM 3= GHMMY VARLIARLES THAT ARE RETURNED BY SUBROQUTINE

CFETNTE-DLSTANCE - BUT ARE NOT USET AN THIS SURRQOUTINE
MIMLr THE MINIMUNM DIGTAMCE CALCULATED BY SUBROUTINE ‘FINO-UISTANCE'
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MAXNE NIz TR VAl LARLY USED A% A TTU-BREARFE FOR AL TERNATING WiITH
THERTLCAL MINEMUM DLSTAMNCES

ENOFT 0= THE DIATANCE RETWEDN EMIGCOINTS 1 AND 2

YRETCT, Je THE WALUL OF ALTX O, ) TN RET-GRE M-BLUE SFACE

YOREEHC T, Jos TV VAl Ul OF aLTY (T, TN RBGE SFACE

YRLUE D, s THE e Ul OF al1201 ) TN RER GRACE

INTEGER UARTARLEG! -

ENIDFET L= (HE HURBER SSSQCTATED WTTH SO LRt 1
ENTT 2= THED NUBER ASSOCTATED WITH ENTWPFOINT 2
M= THE NUMBER OF POINTS

DUMA , DS NOT USED T THIS SUBROUT TR

CHARACTER UARIABLES?
STATFT(Y Y= THE STATUS OF FOINT T& FITHER FIXED QR UNEIYET
LOCALTOT, ..J Y= THE LACATEION OF THE JTH ALTERNATIVE FOR EMNUFQOINT T
ETTHER N QR OuT
DUMS= A VARIARLE REQUIREC FOR SUBROUTEINE ‘RGEOUT S RUT MNOT USED
IN THIS SURROUTINE

SURROUTINE CHEALT(X,Y yZyN)- CAPD AL TX v ALTY y ALTZ BTATF T ENI T,

% ENDFT2y NEWTD

430
C  THI
C OF

%«

&G

420
410

REAL X (30),Y(50) 1(\.)0))-( AFTLALTX(2:27) o ALTY (2,27 o ALTZ(2,27)
MEWLD, CHRKX(50) y CHKY (G0) , CHKZ (S50) , DUML (2) , UUM2 (2)  OUMI(2) ,
MIMO, MAXENTL, ENUPTU YREDC2 . 27) p YEREENCZ 27 y YRLUE (2, 27)
INTEGER ENIIF‘T].yEI‘HIlF"TlZyN;Ill.h"m,IIUHJ
CHARACTER  STATFT S0 ML, LOCALT (2, 27X %E, IUMER4
MEWN=CAFD
MAXENU=CAFD
[ 400 I=1,M
CHRXCTI) =X{(TI)
CHRY(T)=Y(I)
CHERZ (I =2
CONTIMUE
5 LOOF CHELCKRS Al %54 ALTERNATIVES TO SEE TF THLY ARE IN OF QU
THE REGION
Y 410 G=1,2
ng 420 T=1,27
Call RGROUTCALTX(S Ty ALTY (! :,Y))Nl TES Ty Ty YREDCS T
YOREENMCS, Ty YRLUE (S, T) , TIUM&
CAall CHERFTCOYREDCS, T, YGREE i‘"“\, TYe YRLUE CS Ty
L.OCALLT(S,T))
CONTINUE
CONTINUE
D0 430 T=1,27 :
IF (LOCALTCL,T) JEQ. “IN’) THEN
[no 440 G=1,27
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G BETUWERR TIN5 i

PRI T GUT CEALEX 0L, 1) ALTYXCR2, 5 1 kad
Y CAOLTY O e TY AL TY C2 O YRR AL TZ () T -
X s ALY SO K
_ C1F THAT TISTAMCY T45 GRUATER, THER CHECK THE QUERALL MINTMUM 10ESTANCE

T eI D OT . MEWDY THH
.i CHRY CERIET L = a4l 1%, 1)
¢ CHEY CENT ) =@l TY L1, T
A CHEZ CERIET U =l T201, T) .
g CHEX CENIE T2 ) =0 T2, 5)
- CHIEY CEHTET2) Al TY (2 6)
- CHIZCEMOr I2)=AL 1702, %)
3 CALL FENUUCCHRY g CHRKY y CHZ y Ny STATIT 5 MINT,
% TUMT , OUM2, DUME, DUMA, DUMS , TIUMSE )

GO TF THE MINIMUM QISTANCE 16 THD SAME BUT WITH & GREATER ENDFOINT
0 CISTANGCE . UR LF THE MINIMUM DISTANCE 1S BETTER, THEMN MOVE THE
C ENDFOINTS

O K

Y

——
—_—

™

IF CCMIND WGT. NEWD) JOR. (MIND JEQ. )
% NEWD JAND, ENOPTO JGT. MAXENU)Y) THEN i
NEWD=MIND

. MAXENTE=ENTETD

3 XCENOPET1Y=ALTX(L,T)
' YCENTIFTI)=alTY (1, T)
- ZCENDFTI)=ALTZ (1, T)
? XCENIFT2)=aLTX(2,5)

e o gan
-

YCEMDFT2)=ALTY(2,8)
i ZCENIFT2) =ALTZ(2,8)
ENDIF
! ENDCTF
f ENDLF
‘i 440 CONT INUE
1
|

el b s

[

ey

ENUIF
430 CONTINUE
N

'

ORI SOI OISR AR ACKAOE SOICICICH KRR ONCIOR SRR ICRACROK 32353 0 0K RCICH OISR ORISR Sl

BURRQUTINE CHECK-FQO1MTY

bttt d A

THIS SURROUTINE CHECKS FOLNTS TO SEE IF THEY ARE IN OR
OUT OF THE REGTON, IT CHECKS THEM AGAINST A SET OF EQUATIONS
CCONSTRAINTSY OF THZ FORM AX 4+ BY + CZ £ K WHICH MUST RE
SUFFLTET Y THE USER, AND THEM OUTPUTS & CHARACTER VARIARLE
WHLCH TUEMTIFIES WHETHER THE FOINT I8 2IN° OF 7OUT.’

—l

NOTE S THIS SURROUTINF IS FOR LLINEAR CONSTRAINTS ONLY.  NON-
LENEAR CONSTRATINTS MAY RE USED RY CHANGING THE FQUATTION FOR

VIG)y RUT THEY MUST BE CONVEX TN ORDER FOR THE ALGORLITHM TO

WORK .
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fY***#*ﬁ##!W%Wﬁ*ﬁ*ﬁ#*#****#ﬁ*ﬁ#***#**#%*W**W***#W**ﬁﬁ**********#ﬁ*****
UATTLARLE I TRITLONS

Al Ualib et 168

YOO ¥ CODRWINATE OF  THE FOLINT BETNG TESTE
YOO ey U LHATE OF THE POINT SEING TiU
ZOOEW T T COORTTRATE OF THE FOINT RBEING
ACTY= THL CORFFICTENT OF X TN CONSTRATHNT I
WOy T GO LCIENT OF Y IN CONSTRATNT T
COT» 0 COPFFICIFNT QF 2 IN CONSTRATHT I
C ATy THE wal Ub O THD RIGHT HAND S1DE IN CONSTRAINT I
(" VO = THIE UALUE O CONGSTRAINT T EVALUATED AT THE FOINT
C BETNG TLYTED

R T T e I e
[ TE oL R .

e INTEGER ValIakLES:
G Fa= THE NUMBER OF FACES (CONSTRAINTS) ON THD REGION t

CHARACTER VARIARLESS
FOIMNT= THE LOCATION OF THE FOINTy EITHER IN OR OUT

sHOkoREookosnlosicieveioororek ok seokoaicetololekolskeioiololok olei:ioiololsfoloR okiorokeiooiolelookoeteoC oK b

—
SO0 DO0 0

SURROUTIME CHERPTOXCOORT, YCOQORD ZCOORI, FOINT)

RLAaL  XCQORO, YCOORED ZCOORU,ACLQ)Y yB10) ,C010) ,K{10),V(10)
INTEGER  F

CHARACTER  FOINTX)E

-
LA

o
?

= PMPORTANT NOTE TO USER ~-

THE USER MUST SUFPLY THL NUMBER OF FACES FOR EACH NEW FROBLEM HIRE.

[rite Rev

as i S S

[
; € THIS LOOF (NITIALLZES THE COEFFICIENTS AT ZERD
| 00 500 Gu1,F
. fEGY0 LD
I BOG=,0
| CE5)=0 0
K (80,0
; VCEI =0, )
500 COMT LA
C
C e LHFORTANT NOTE TO USER —-
0
C THE USER MUST SUFELY THE FQUATTONS FOR THE CONSTEAINTS IN THE
r O OAY F RY 4+ CZ 2 K T.E. HE MUST DETERMINE ANIN FROVITE
® THE VUal UES OF A%, HOE), CCS), AND K(S) FOI 8= 1 TO F. FOR

RN

e

[T P,
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Baal Bl Stk Bod gk St hte b S Ak Saatl S G i SRt Al Sl el Eadb Sl el Andl Sl Jad Sl Ml Nl MaSl At Sl B e e S

TRSTaMe o i e FRECER SN GR RS LN I ETCR I I S S N S S 4 M B R

RN R RN U O D TESDC VI (A N T SR ST R0 TR LR B Y [REE R Y ORI CONSTHA LT

eox 21, THE N s ( 3 sy RODY S0 CO2Y=0, AMT KI2)=1, IF A

CONSTRATHT HAS o o fl FOTHE S1GN . THER BEVERSE THE STGN RY

NEGAT EMG TH oo [?f. POTENT G GO ENSTAMCY, X Y 4 7 = I BECONES
SRR S0 N B SRR T l y BOAEY =Ly COZm- Ly ANDKOCRY o 1 LF

):: \r’ -
THY CONG
z WITH IMEGUALTITIES . FOR TNSTARNUEE .

AND Y ~7 2 Yy A0 @A, ROADl, COado ], R4 =by Al 0y
WLy Cdnde- Dy Al Ko i..\ el ! YOU HOWUE Ay PRORLEMS,
COMSULT YOUR LOUAL MATH EXPERT.

B

Y + 7 o W RECOMES Y DL T

P = T e T
PRSP A 5 NP A i

C
ALY =10
H{2)e1,0
CE3Y=1,0
ACAY==1,0
WS =10
CCAI=—1.0
AT I~ ,0
R{7)=1,0
CC7r==1.0
K{1)=50.,0
K(2)=160.0
K{3)=20.0
K(4)=0.,0
K{5)=0,0
K{5Y=0,0
K(7)=-2.,3
THE CONSTRAINTS A% THEY ARE SHOWN AROUVE CORRESEONU TO CARTER AND
CARTER’S CONCEFT OF THE FEASTELE REGION FOR THE COLOK SFACING
FROELEM AND LOCK LIKE THIS IN REDy GREEN, AND BLUE COORDINATES:
RED £ 50
GREEN £ 160
RLUE £ 20
REDL = 0
GREEN 2 0
BLUE =0
RET + GREEM + BLUE = 2.3

OO0 0n

FOINT="IN’
THIS LOOF CHECKS THE FOINT AGAINST EACH OF THE CONSTRAINTS
N0 510 6G=1,F
VS =A (S dXCOQRTHHR S Y CQORTHC CS) 2000
IF (s 6T, KO8 THEM
FOINT=20UT
G0 TN G20
Ewre TF
310 COMTIMUE
520 NI
C
C
230K R RCIORORSORCK O IOIOY IO ROROK RSO sl il iolololosiokorsioisioloraoiooioiolor ok sokolokoy
e

-
A7
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ep]

P R

OSSO0

RIS S S e i e s TR Y T T T

RS TG B T IR A PO R B

PHE POREOSE G THTS SUEOHIETIRE. TS TO FTY POINTS A
UETERMEINE WIETHE R OR NOT THE PROGRAM T8 BOME. THE LOGYL
ALCOCIATE VWETH B U ENG Pt T8 THAT . ONCE THE MINTMURM
PESTANCE TS5 MaXIiTZEU, THAT ESTANCT TG NO LONGER UNDES COMSTIN -
ATTOR, S0 OM OF TR PR OTRTS TS FIXED AT 175 LOCATION AN T
SECOMIC CLOGEST Falk OF FOINTS ES MaXIMTZED.  THYS CONTIRNUE
UL AL OIS ARE FIXE @7 uHICH ThME THEY AR UL
TOE SR T Ay TMFRGVEITH T Chan B Matl e T FROGHSM STy
WIHIE R NORED CAN BE MATH .

M TN R O S NN O A O CRORO SOROROH SO O R RO s s OO e oo e

UaiiTeRil TEFINTTTONS

REAL UARTAREESS

XD = THE X-COORDINATE OF POINT X
Y4T)= THE Y-COORDINATE OF FOINT X
ZOD)= THE Z-CNORDINATE OF FOINT I

GUML p TIUM2 , DUME , BUMA4= - BUMMY  UARTARLES REQUIRED FOR SURROUTING 2 FINU-

DISTANCE S RUT NOT USED IM THIS SUBROQUTINE
MEMX (D)= THE X~-COORDINATE OF FOINT I FROM THE PREVIOUS TTERATION
MEMY (I)= THE Y-COORDINATE OF FOINT I FROM THE FREVIOUS TTERATION
MEMZ(I)= THE Z-COOQRIINATE OF FOAINT T FROM THD PREVIOUS ITERATION
SIZE= THE STEF~S5IZE

INTEGER LeRIaRLES?S

N= THE NUMBER OF FOINTS

ENDOFT 1= THE NUMRER ASSOCTATED WITH ENIFPQINT
EMOFT2= THE NUMBER ASSOCTATED WITH ENMIFOINT 2
NUMF TX= THE NUMRER OF FOINTS THAT HAVE REEM FIXED

CHARACTFR VARTARLES?
STATFT(ID)= THE STATUS QF FOINT Iy ETITHER FIXEN OR UNFIXED
STATUS= THE STATUS OF THEZ PFROGRAM ETTHER DOME OF RUN

% HOKOMCKFCROHOH KA RO SICIINOR A0IORHOROK IO ORI NOKSIAKCH S KR SN SOK SO SR K M 090K 30K 3000 O

c
C

- > P TN . - - - . ~ .
L B » . .t . e e e T e (et . S .
[T O R A P § 2+ aatlalal alaiaratabadad o dnl oo foimeRend ;.Y PP, ntmondsaaniiovdntrelivendinn,

SURROUTINE FIXPTOL Y v Zy Ny STATE Ty END T CENOFTZ S UZE  STATUS  MEMY ,
MEMY » MEMZ)
REAL XG0y YOS50 p ZCHO) y THIMT L BUM2C2) y TIIME 02  TIIMA (2) y MEMX (500,
MEMY (505 , MEMI(S0) , 8T 2E
INTEGER  NyENUFTL, ENUFT2, MUMITITX
CHARACTER  STATFT{S0)XL,8TATUSKS

== TMPORTANT NOTE 70 USER —-

IF THE USER WISHES TO CHANGL THE MAXIHUM STEF-STZE, HE MUST MoK

NS A IR




i U R IR WS R T ) B I R AU R A S S AT I s S S R C FA N N R S S W DR TR I

QLA =130,0
NUMEF L2050
COTHYS LOOF COUNTS THY MIMBER OF FOIMTS TEAT AR AlLREATY PIXED
0 SO0 L=,
rodu8TaTeToly oG ) THEN
M TR UM T
FMODTF
Go0 COMTTHLE
CALY FINNIO Y, E My STaATT DU UM DA DA DD T L ENTIE T2
& STATUE)
COTHESE MEXT TUHO T STATEMEMTS FIX A& NEW FOINY
LF C8TATRTOEMIFTLY Q. 717 THIEN
MNUME IXC=NURME TXL
ATATFTENDPTLIY="F’
GO T 410
wMI IF
IF (STATPTCENTGPT2) JEQ. “U7) THEN
MUMF T X=NUMF X1
STATFTCENURPTR)="F/
ENDIF
CIF ALL THE FOINTS ARE FIXED, THEN CHECK TO SEE IF THEY ARE IN THE
C SAME LOCATION a5 REFORE
610 IF (NUMFIX JEQ. N) THEN
00 &20 I=1,N
TFOMEMXCT) oNE. XCOID) LO0R. MEMY(I) JNE. Y{I) JOR.
% MEMZ (L) JME., Z{I)) THEN
STATUS= " RUN
GO T 630
FLSE
STATUS= DONE -
EMD IF
620 CONTINUE
C IF THZ POTNTS HAVE MOVEU SINCE THE LaST ITERATION, THEN UNFIX aAll
€ THE FOINTS, STORE THEIR LOCATIOMS IN MEMORY, AND RUN THROUGH THE
C  PROGRAM AGATM
&EAD Y &40 Y =1.M
STATHTCT Y= 11
MEMX(T)Y=X{1)
MEMY CL)=Y (1)
MEMZ{T)=7¢1)
A40 COMNT INUE
e Iy
M

C
C
C

BURROUTINE FRINT

oOoeh
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NN R o R R O I O MO R S ORT SOOR T O N M S OR S NOR S Ok sl
AT AR DD TNTT VP ORS

oAl WMaliiani s

AL THE XK-000RINATE F PPOINT
YOrys  bHE Y- COURENATE OF POLNT
SO0 PV -COORDIRATE QF FOINT I

TNTEGLE VUARTARLESS
Nes o THES MUMBYE OF FOTNTS

S AN Y R ORI O ORIV AORIOY AR OV O YO O R AR SORROCIOROR OIOR SO el

GURROUTTING PRINTOX, Y2y N
REAL XG0, Y (S0 Z(E0)
IMTEGER N
WREITECS,700)
ng 710 I=14N
WRITE(I 7200 Ty XC1) Y (T),,Z(1D)
COMTINUE
WRITEAC(E, 730)
FORMATCS  FOINT 9%y "L p 13X, 7U% p 13X, 7UN)
FORMAT(3X T2, 7X,F8.3,7XyF3.3,7X,78.3)
FORMATOY )
END

OO K RIOICR Y KR OIOKIOK NCHR R CIOR eoloieioicoksiolek ceiaioloeiarolsloloielssorsioiolotnieloiioisiciol;lol

SUBROUTfNE RGROLIT

THIS SUBROUTINE CONVERTS POINTS FREOM THETR Lk, Wk, ANIU X
COORDINATES TO THETR TRISTIMULUS VALUES AND THEN TO THEIR
FHOGEHOR LUMINANCES AND FRINTS THESF VALUES TO THE FILE NaMEX
FERECOUT Y (AK,.A. SEACE~OUT), THE USER MAY CHOOSE TN ESTARLTSH
DIFFERENT VALUES OF MAOXIMUM LUMINANCE, U-FRIME NOT, U PRIME NOY,
AMTL CHROMATICITY COURTINATES FOR TIUE GUNS DEFENDING ON HES OF
HEF FARTICULAR AFFLICATION, ALSO, FOR SEACING IN A SYSTEHM
OTHER THAN THE CIE LXUXYY SYGTEM, DIFFERENT TRANSFORMATION
FQUATIONS MUST EE USEI.

M SRR ROH IR AR CROK K AIOK MK ROK KO HKOK S KKK KOKIOIOKOR OO 30K KK SR K 0K K 30K % 3K K O

VARTIARLE DEFINITIONS
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VSTandly - T
DA RE N T L
Yia THE Y
LA G B | S
Yie o ML
RN EE 1 1 F S
il PHE
Fidtdl THE &
VEHMNGQT - THIS
LHAMMNT = THE
XTOTYAL O b
YTQVf {1 i
ZTOTALCLy=
UPRIME (L) =
VPR THE Y )
GMALLX (L) =
SMALLY (T =
OMALLZT )=

Do
TN Y B S B
T TV Y I ) O ] R
FIU WL OF |
HUOMATLeTTY COORTINATE FOR TS B D GUN
HECGMATIC DY COURDTMATE JROTHEORCGTE GUN
HLOMATTCLTY COORDEHaYE FOR T GRELN G

Iy

LY

L1

P POl
Mo FOTHT L
£ OFOR FOINT X

PHOR AT P07 COCRDTRATE FOR HE e GUd

HBOMAT 1] COORTTMATE FOROTHE ROUE GUEY

M T e COORTLAETE PO THE B GUN
LTI UMl NN CE AL QWATH

Ut A O W -REMe MO

Vel U OF LI NOT
THE X-UDORUTHATE GF OTHE THRESTIMULUSG VALUE FUR FOINT I
THE Y -COORDENATI OF THED TEISTIMULUS VAl Ul FOR POINT I
THE Z-COO0RBINATE OF THE TRYISTIMULUS VALUE FOR FOINT I
THE YAl UE OF U-FRIME FOR FOLNT T

THE WAL OF V-PRIME FOR FOTNT I
THE X CHROMATICITY COORWINATE OF FOITNT I
THE Y CHEOMATICITY COORUTNATE OF FOINT I
THE Z CHROMATICITY COORDINATE OF POINT I

YREDCI)= THE RED FHOSFHOR LUMINANCE FOR FOINT I

YGREEN(TL )=
YRLUE(TI)= T

THE GREEN FPHOSFHOR LUMINANCE FOR POINT I
HE RLUE FHOSFHOR LUMINANCE FOR FOINT I

Ki= THE FIRST-BOW, FIRST-COLUMM VaLUE OF THE TRANSFORMATION MATRIX

THAT €0

THE FIR
THE THI
THE THT
\ THE THI
DET= THE TiE

IMTEGER VAR
M= THE MUME

CHARACTER V
STATUS= THE

MVERTS TRISTIMULUS VALLUES TO FHOSFHOR LUMTNAMCES

= THE FTRGT-ROW, SECONI--COLUMN UALUE OF THE MATRIX

ST-ROW, THIRD-COLUMN VALUE OF THE MATRIX
RO~FOW, FIRST-COLUMN UALUE OF THE MATRIX
RO-ROKW, SECOND-COLUMN UALUE OF THE MATRIX
FI-ROW, THIRN-COLUMN VALUE OF THE MATRIX
TERMINANT OF THE TRANSFURMATION MATRIX

TARLESS
EROF FOINTS

ARTARLIES?
STATUS OF THY PFROGRAMS EITHER SDONEZ OR 7RUNS

KON KON O HORROYORCIOR R IO OICRCAOK SRR O ol oK OR CiCioIoRoR sieoioicECH ORSOICKIOICICKSORNCIAOK K

»
C

SURISCLT TR
REAL  LSTAR
& W HMNC
& VIR TH
& Y G
IMNTEGER M
CHARACTE R
XR=4 6

YR o3

ROGEOUT L STAR USTAL UETAR Ny YREDYGERFEN, YRLUE, STATUS)
00y USTAR S0 yVETARID0) o XE YR, XG,YG, XEy YE, YNOT,

T ENOT X TOTAL CEOY  YTOTAL (S0 , ZTATAL {30 yUFRIMECS00
ELCd) p GEALLX OO, SMALLY (S50  SHMALLZ(H0) s YREDCEHD)

MO YR CS0) g KE1 K2, K3 KA K& K&, DET
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Al o

Yl G
XB=, 13
YH= QU
YN =R
UFMNQT= 1
UEFMNQ = 4469700

- MG Y EYSYG

Ké={1-XHE~YR)/YH

DE T =R DR S-SR 2R KA -~ KRG R ARG~ N4
o 800 T=1,N

G THESE ARE THE TRANSFORMATLION EQUATITONG

800
C
C

830

380

810
820
840
850

YTATALALI) = (CLSTARTII+16) /7116 KEFIRYNQT

UFRIME CD) = qUSTARCD) /A CLIXLSTAR (1) ) HUFFMNQOT

UPRIMEC(I)={USTAR(I)) Z/CL3RLETARCD) ) Y HVIFMNOT

SMALLX (I =X UPFRIME CD) Z CHOXUPRIMEC D) ~146XVUPRIMECIY 12D

SHALLY (T)=4XVPRIME (L) / (AKUPRIMECT) ~16XVFRIMECT ) +12)

SMALLZ D) =1 -GMALLY (1) -SMALLX(T)

XTOTAL (D) =6MALLXC(I) XY TOTAL (L) ASMALLY (1)

ZTOTAL (D) =6MaAlLZ I Y TOTAL (I /GMALLY ()

YREGETI ) =(XTOTAL (I X (RE-REIFYTOTAL (D) M (RIKRG-KIKXKE) +
& ZTOTAL (I R(K2-K3) ) /NET

YGREEN(ID) = (XTOTAL (I ¥ (RKA-RKEI+YTOTAL (T K (KLERS~KEKK4) +
& ZTOTAL (I X{K3~-K1)) /LET

YHLUECI) =(XTOTAL (DY RCKE-KAY+YTOTAL (T R R2MRA-NDRKE ) +
& ZTATAL (DY R (NI -K2) ) ADET
CONTINUE

THIS SECTION FORMATS aNU FRINTS THD COMPUTED TRISTIMULUS UALUES AND
FHOSFHOR LUMINANCES

IF (STATUS JEQ. “TONF ‘) THEN
WRITE(3,810)
WRITE(3,320)
ng 830 I=1,N
WRITECR 840 L, XTOTALLD) L YTOTAL L) ,ZT0TAL L)
COMTINUE
WRITE (3,85%0)
WRITE(3,8460)
WEITE(S,870)
o 880 I=1,N
WRITE(I 8403 L YREDCE) ( YORFENCT Y  YREUE (1)
CONTIMNUE
WRITE(3,83%0)
WHRITE(3,850)
END IF
FORMAT (14X, " THE TRISTIHULUS VALUES AaRE7)
FORMAT (2K, "FOTNT 22Xy 7X7 14X, 'Y 14X, ' 77)
FORMATO3X, T2, 77Xy F8.3, 77X, FO &, 7X,FH 3D
FORMATO )
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Appendix C. Example of Roley Heuristic

Spacing Four Points in a Square
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Although the solution is now optimal, the program continues until the
step-size is less than .0001 at which time the step-size is reset back to
.5 and point number three is fixed in its place, allowing the algorithm to
concentrate on trying to optimize the other three points. The step-size
then gradually decreases back to .0001 and another point is fixed, and so

on, until all four points are fixed. At that time, the locations of the

points are stored in memory and all the points are unfixed to see if any

more improvements can be made. The program then goes through the whole
s é process again, reducing then resetting the step-size and fixing the points
Tl
{;h until all four points have been fixed. Because no improvements could be
E;; made, the program is done at that time.
¢
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